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Abstract—Recently, a new adaptive scheme [Conte et al.
(1995), Gini (1997)] has been introduced for covariance structure
matrix estimation in the context of adaptive radar detection
under non-Gaussian noise. This latter has been modeled by
compound-Gaussian noise, which is the product c of the square
root of a positive unknown variable (deterministic or random)
and an independent Gaussian vector x, c = x. Because
of the implicit algebraic structure of the equation to solve, we
called the corresponding solution, the fixed point (FP) estimate.
When is assumed deterministic and unknown, the FP is the
exact maximum-likelihood (ML) estimate of the noise covariance
structure, while when is a positive random variable, the FP is
an approximate maximum likelihood (AML). This estimate has
been already used for its excellent statistical properties without
proofs of its existence and uniqueness. The major contribution of
this paper is to fill these gaps. Our derivation is based on some
likelihood functions general properties like homogeneity and can
be easily adapted to other recursive contexts. Moreover, the cor-
responding iterative algorithm used for the FP estimate practical
determination is also analyzed and we show the convergence of
this recursive scheme, ensured whatever the initialization.

Index Terms—Adaptive detection, compound Gaussian, con-
stant false alarm rate (CFAR) detector, maximum-likelihood (ML)
estimate, spherically invariant random vectors (SIRV).

I. INTRODUCTION

THE basic problem of detecting a complex signal embedded
in an additive Gaussian noise has been extensively studied

during last decades. In these contexts, adaptive detection
schemes required an estimate of the noise covariance matrix
generally obtained from signal-free data traditionally called
secondary or reference data. The resulting adaptive detectors,
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as those proposed by [7] and [8], are all based on the Gaussian
assumption for which the maximum-likelihood (ML) estimate
of the covariance matrix is given by the sample covariance
matrix. However, these detectors may exhibit poor performance
when the additive noise is no more Gaussian [6].

This is the case in radar detection problems where the additive
noise is due to the superposition of unwanted echoes reflected
by the environment and traditionally called the clutter. Indeed,
experimental radar clutter measurements showed that these data
are non-Gaussian. This fact arises for example when the illumi-
nated area is nonhomogeneous or when the number of scatterers
is small. This kind of non-Gaussian noises is usually described
by distributions such as -distribution, Weibull, etc. Therefore,
this non-Gaussian noise characterization has gained a lot of in-
terest in the radar detection community.

One of the most general and elegant non-Gaussian noise
model is provided by the compound-Gaussian process which
includes the so-called spherically invariant random vectors
(SIRVs). These processes encompass a large number of non-
Gaussian distributions mentioned previously and include, of
course, Gaussian processes. They have been recently intro-
duced, in radar detection, to model clutter for solving the basic
problem of detecting a known signal. This approach resulted
in the adaptive detectors development such as the generalized
likelihood tatio test–linear quadratic (GLRT-LQ) in [1] and [2]
or the Bayesian optimum Radar dtector (BORD) in [3] and [4].
These detectors require an estimate of the covariance matrix of
the noise Gaussian component. In this context, ML estimates
based on secondary data have been introduced in [11] and [12],
together with a numerical procedure supposed to obtain them.
However, as noticed in [12, p. 1852], “existence of the ML esti-
mate and convergence of iteration is still an open problem.”

To the best of our knowledge, the proofs of existence, unique-
ness of the ML estimate,and convergence of the algorithm pro-
posed in [1] have never been established. The main purpose of
this paper is to fill these gaps.

This paper is organized as follows. In Section II, we present
the two main models of interest in our ML estimation frame-
work. Both models lead to ML estimates which are solution of
a transcendental equation. Section IV presents the main results
of this paper while a proofs outline is given in Section V:
for presentation clarity, full demonstrations are provided in
Appendices I–VIII. Finally, Section VI gives some simulations
results which confirm the theoretical analysis.
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II. STATE OF THE ART AND PROBLEM FORMULATION

A compound-Gaussian process is the product of the square
root of a positive scalar quantity called the texture and a -di-
mensional zero mean complex Gaussian vector with covari-
ance matrix usually normalized according to

, where denotes the conjugate transpose oper-
ator and stands for the trace operator

(1)

This general model leads to two distinct approaches: the well-
known SIRV modeling where the texture is considered random
and the case where the texture is treated as an unknown nuisance
parameter.

Generally, the covariance matrix is not known and an es-
timate is required for the likelihood-ratio (LR) computation.
Classically, such an estimate is obtained from ML theory,
well known for its good statistical properties. In this problem,
estimation of must respect the previous -normalization

. This estimate will be built using indepen-
dent realizations of denoted for .

It straightforwardly appears that the likelihood will depend
on the assumption relative to texture. The two most often met
cases are presented in Sections II-A and II-B.

A. SIRV Case

Let us recap that an SIRV [5] is the product of the square
root of a positive random variable (texture) and a -dimen-
sional independent complex Gaussian vector (speckle) with
zero mean normalized covariance matrix . This model led to
many investigations [1]–[4].

To obtain the ML estimate of , with no proofs of existence
and uniqueness, Gini et al. derived in [12] an AML estimate
as the solution of the following:

(2)

where is given by

(3)

B. Unknown Deterministic Case

This approach has been developed in [13], where the ’s
are assumed to be unknown deterministic quantities. The cor-
responding likelihood function to maximize with respect to
and ’s, is given by

(4)

where denotes the determinant of matrix .
Maximization with respect to ’s, for a given , leads to

, and then by replacing the ’s in (4) by

their ML estimates ’s, we obtain the reduced likelihood func-
tion

Finally, maximizing with respect to
is equivalent to maximize the following function , written in
terms of ’s and ’s thanks to (1):

(5)

By cancelling the gradient of with respect to , we obtain
the following:

(6)

where is given again by (3) and whose solution is the ML
estimator in the deterministic texture framework.

Note that can be rewritten from (1) as

(7)

Equation (7) shows that does not depend on the texture
but only on the Gaussian vectors ’s.

C. Problem Formulation

It has been shown in [12] and [13] that estimation schemes
developed under both the stochastic case (Section II-A) and the
deterministic case (Section II-B) lead to the analysis of the same
equation [(2) and (6)], whose solution is a fixed point (FP) of
(7). A first contribution of this paper is to establish the existence
and the uniqueness, up to a scalar factor, of this FP which
is the AML estimate under the stochastic assumption and the
exact ML under the deterministic assumption.

Moreover, a second contribution is to analyze an algorithm
based on the key (6), which defines . The convergence of
this algorithm will be established. Then, numerical results of
Section VI will illustrate the computational efficiency of the al-
gorithm for obtaining the FP estimate.

Finally, the complete statistical properties investigation of the
corresponding ML estimate will be addressed in a forthcoming
paper.

III. STATEMENT OF THE MAIN RESULT

We first provide some notations. Let and be positive
integers such that . We use to denote the set of
strictly positive real scalars, to denote the set of

complex matrices, and the subset of defined by
the positive–definite Hermitian matrices. For ,

the Frobenius norm of which is
the norm associated to an inner product on . Moreover,
from the statistical independence hypothesis of the complex

-vectors , it is natural to assume the following.
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H) Let us set . Any distinct vectors taken
in

are linearly independent.
From (5) and (7), one has

and

Theorem III.1:
1) There exists with unit norm such that, for

every , admits a unique FP of norm
equal to . Moreover, reaches its maximum over

only on , the open half-line spanned by .
2) Let be the discrete dynamical system defined on

by

(8)

Then, for every initial condition , the resulting
sequence converges to an FP of , i.e., to a
point where reaches its maximum.

3) Let be the continuous dynamical system defined
on by

(9)

Then, for every initial condition , the
resulting trajectory , , converges when tends
to , to the point , i.e., to a point where
reaches its maximum.

Consequently to 1), is the unique positive–definite
matrix of norm one satisfying

(10)

Proof: The same problem and the same result can be for-
mulated with real numbers instead of complex numbers and
symmetric matrices instead of Hermitian matrices, while hy-
pothesis H) becomes hypothesis H2). The proof of Theorem
III.1 breaks up into two stages. We first show in Appendix I
how to derive Theorem III.1 from the corresponding real results.
Then, the rest of this paper is devoted to the study of the real
case.

IV. NOTATIONS AND STATEMENTS OF THE RESULTS

IN THE REAL CASE

A. Notations

In this paragraph, we introduce the main notations of this
paper for the real case. Notations already defined in the com-
plex case are translated in the real one. Moreover, real results
will be valid for every integer . For every positive integer ,

denotes the set of integers . For vectors of ,
the norm used is the Euclidean one. Throughout this paper, we
will use several basic results on square matrices, especially re-
garding diagonalization of real symmetric and orthogonal ma-
trices. We refer to [14] for such standard results.

We use to denote the set of real matrices,
to denote the set of orthogonal matrices, and

, the transpose of . We denote the identity matrix of
by .

In the following, we define and list the several sets of matrices
used in the sequel:

• , the subset of defined by the symmetric posi-
tive–definite matrices;

• , the closure of in , i.e., the subset of
defined by the symmetric nonnegative matrices;

• for every

It is obvious that is compact in .
For , we use to denote the open half-line spanned

by in the cone , i.e., the set of points , with .
Recall that the order associated with the cone structure of is
called the Loewner order for symmetric matrices of and
is defined as follows. Let and be two symmetric
real matrices. Then, ( , respectively) means
that the quadratic form defined by is nonnegative (pos-
itive definite, respectively), i.e., for every nonzero and

, ( 0, respectively). Using that order, one has
( , respectively) if and only if ( ,

respectively).
As explained in Appendix I, we will study in this section the

applications and (same notations as in the complex case)
defined as follows:

and

Henceforth, and stay for the real formulation. In the pre-
vious, the vectors , , belong to and verify
the following two hypotheses:

H1) , ;
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H2) for any distinct indices chosen
in , the vectors are linearly
independent.

Consequently, the vectors verify H2).
Hypothesis H1) stems from the fact that function does not

depend on ’s norm.
Let us already emphasize that hypothesis H2) is the key as-

sumption for getting all our subsequent results. Hypothesis H2)
has the following trivial but fundamental consequence that we
state as a remark.

Remark IV.1: For every vectors (re-
spectively, ) with , ,
the vector space generated by (respectively,

) has dimension .
In the sequel, we use , , to denote the th iterate of

, i.e., , where is repeated times. We also
adopt the following standard convention .

The two functions and are related by the following re-
lation, which is obtained after an easy computation. For every

, let be the gradient of at , i.e., the
unique symmetric matrix verifying, for every matrix

Clearly, is an FP of if and only if is a critical point of
the vector field defined by on .

B. Statements of the Results

The goal of this paper is to establish the following theorems
whose proofs are outlined in Section V.

Theorem IV.1: There exists with unit norm such
that, for every , admits a unique FP of norm equal
to . Moreover, reaches its maximum over only on

, the open half-line spanned by .

Consequently, is the unique positive–definite
matrix of norm one satisfying

(11)

Remark IV.2: Theorem IV.1 relies on the fact that reaches
its maximum on . Roughly speaking, that issue is proved as
follows. The function is continuously extended by the zero
function on the boundary of , excepted on the zero matrix.
Since is positive and bounded on , we conclude. Complete
argument is provided in Appendix II.

As a consequence of Theorem IV.1, one obtains the next
result.

Theorem IV.2:
• Let be the discrete dynamical system defined on

by

(12)

Then, for every initial condition , the resulting
sequence converges to an FP of , i.e., to a point
where reaches its maximum.

• Let be the continuous dynamical system defined
on by

(13)

Then, for every initial condition , the
resulting trajectory , , converges, when tends
to , to the point , i.e., to a point where
reaches its maximum.

The last theorem can be used to characterize numerically
the points where reaches its maximum and the value of that
maximum.

Notice that algorithm defined by (12) does not allow
the control of the FP norm. Therefore, for practical conve-
nience, we propose a slightly modified algorithm in which the

-normalization is applied at each iteration. This is summa-
rized in Corollary IV.1.

Corollary IV.1: The following scheme:

(14)

yields the matrices sequence , which is related
to the matrices sequence , provided by (12), for

, by

This algorithm converges to up to a scaling factor which
is .

As a consequence of Theorem IV.1, we can prove a matrix in-
equality which is interesting on its own. It simply expresses that
the Hessian computed at a critical point of is nonpositive. We
also provide an example showing that, in general, the Hessian
is not definite negative. Therefore, in general, the convergence
rate to the critical points of for the dynamical systems
and is not exponential.

Proposition IV.1: Let , be two positive integers with
and be unit vectors of subject to H2)

and such that

(15)

Then, for every matrix of , we have

(16)

Assuming Theorem IV.1, the proof of the proposition is short
enough to be provided next.

We may assume to be symmetric since it is enough to
prove the result for , the symmetric part of .
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Applying Theorem IV.1, it is clear that the function associ-
ated to the ’s reaches its maximum over at . The expres-
sion of , the Hessian of at is the following. For every
symmetric matrix , we have

Since is nonpositive, (16) follows. Note that a similar for-
mula can be given if, instead of (15), the ’s verify the more
general (11).

Because of the homogeneity properties of and and in
order to prove that the rates of convergence of both and

are not exponential, one must prove that the Hessian
is not negative definite on the orthogonal to in the set of

all symmetric matrices. The latter is simply the set of symmetric
matrices with null trace. We next provide a numerical example
describing that situation. Here, , , and

Then, H1), H2), and (15) are satisfied. Moreover, it is easy to
see that, for every diagonal matrix , we have equality in (16).

V. PROOFS OUTLINE

In this section, we give Theorems IV.1 and IV.2 proofs. Each
proof is decomposed in a sequence of lemmas and propositions
whose arguments are postponed in the Appendices I–VIII.

A. Proof of Theorem IV.1

Theorem conclusions are the consequences of several propo-
sitions whose statements are listed in the following.

First, it is clear that is homogeneous of degree zero and is
homogeneous of degree one, i.e., for every and ,
one has

The first proposition is the following.
Proposition V.1: The supremum of over is finite and is

reached at a point with . Therefore,
admits the open half-line as FPs.

Proof: See Appendix II.
It remains to show that there are no other FPs of except

. For that purpose, one must study the function . We first
establish the following result.

Proposition V.2: The function verifies the following prop-
erties.

P1) For every , , if , then
(also true with strict inequalities).

P2) For every , , then

(17)

and equality occurs if and only if and are colinear.
Proof: See Appendix III.

The property of described in Proposition V.3 turns out to
be basic for the proofs of both theorems.

Proposition V.3: The function is eventually strictly in-
creasing, i.e., for every , such that and

, then .
Proof: See Appendix IV.

We next proceed by establishing another property of , which
can be seen as an intermediary step towards the conclusion.

Recall that the orbit of associated to is the trajec-
tory of (12) starting at .

Proposition V.4: The following statements are equivalent:
1) admits an FP;
2) has one bounded orbit in ;
3) every orbit of is bounded in .
Proof: See Appendix V.

From Proposition V.1, admits an FP. Thus, Proposition V.4
ensures that every orbit of is bounded in .

Finally, using Proposition V.3, we get Corollary V.1, which
concludes the proof of Theorem IV.1.

Corollary V.1: Assume that every orbit of is bounded in .
The following holds true.

C1) Let and such that can be compared
with , i.e., or . Then,

. In particular, if or ,
then is an FP of .

C2) All the FPs of are colinear.
Proof: See Appendix VI.

To summarize, Proposition V.1 establishes the existence of
an FP while Corollary V.1 ensures the uniqueness of the unit
norm FP.

B. Proof of Theorem IV.2

1) Convergence Results for : In Section V-A, we al-
ready proved several important facts relative to the trajectories
of defined by (12), i.e., the orbits of . Indeed, since
has FPs, then all the orbits of are bounded in . It remains to
show now that each of them is convergent to an FP of .

For this purpose, we consider, for every , the positive
limit set associated to , i.e., the set made of the cluster
points of the sequence , where with

. Since the orbit of associated to is bounded in
, the set is a compact of and is invariant by , for

every , . It is clear that the sequence
converges if and only if reduces to a single

point.
The last part of the proof is divided into Lemmas V.1 and V.2.
Lemma V.1: For every , contains a periodic

orbit of (i.e., contain a finite number of points).
Proof: See Appendix VII.

Lemma V.2: Let and be such that their respec-
tive orbits are periodic. Then, and are colinear and are
both FPs of .
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Proof: See Appendix VIII.
We now complete the proof of Theorem IV.2 in the discrete

case.
Let . Using both lemmas, it is easy to deduce that

contains an FP of , which will be denoted by . Notice
that there exists a compact containing both the orbit of
associated to and . We next prove that, for every ,
there exists a positive integer such that

(18)

Indeed, since , for every , there exists a positive
integer such that

After standard computations, one can see that there exists a con-
stant , only depending on the compact , such that, for

small enough

The previous inequality implies at once (18).
Applying , , to (18), and taking into account that is

an FP of , one deduces that

This is nothing else but the definition of the convergence of the
sequence to .

2) Convergence Results for : Let , ,
be a trajectory of with initial condition .

Thanks to (B.27) which appears in the proof of Proposition
V.1 in Appendix II, we have for every trajectory of

Then, for every , keeps a constant norm equal to
. Moreover, one has for every

Since is bounded over , we deduce that

(19)

In addition, since is an increasing function, then
remains in a compact subset of , which is in-

dependent of the time . As contains a unique equi-
librium point of , we proceed by proving Theorem IV.2
in the continuous case

(20)

Without loss of generality, we assume that . Let
be the limit of as tends to . Thanks to Theorem
IV.1 and the fact that is constant, it is easy to see that

(20) follows if one can show that . We assume
the contrary and will reach a contradiction.

Indeed, if we assume that , then there exists
such that , for every . This implies

together with the fact that is the unique FP of in
and is continuous and that there exists such that

, for every . Then,
, which contradicts (19). Therefore, (20) holds true.

VI. SIMULATIONS

The main purpose of this section is to give some tools for
computing the FP estimate regardless of its statistical properties;
in particular, we investigate the numerical accuracy and the al-
gorithm convergence in different contexts for the complex case.

The following two algorithms presented in Section IV will be
compared:

• the discrete case algorithm of Theorem IV.2, called Algo-
rithm 1 in the sequel, defined by (12) and whose conver-
gence to the FP estimate has been proved in Section V;

• the normalized algorithm, called Algorithm 2 in the sequel,
defined by (14).

The first purpose of simulations is to compare the two algo-
rithms in order to choose the best one in terms of convergence
speed.

Second, we study the parameters influence in the retained al-
gorithm: the order of matrix , the number of reference
data , and the algorithm starting point. Note that
the distribution of the ’s has no influence on the simulations
because of the independence of (3) (which completely defines
the FP estimate) with respect to the distribution of the ’s. Thus,
without loss of generality, the Gaussian distribution will be used
in the sequel.

Convergence will be analyzed by evaluating the widely used
criterion

(21)

as a function of algorithm iteration . The numerical limit of
(when algorithm has converged) is called the floor level.

Section VI-A compares Algorithms 1 and 2 while
Section VI-B studies parameters influence.

A. Comparison of the Two Algorithms

This section is devoted to the comparison of Algorithm 1 and
2 for Toeplitz matrices which are met when the processes are
stationary. We will use the set of Toeplitz matrices defined
by the following widely used structure:

(22)

for , , and for . Notice that the covariance
matrix is fully defined by the parameter , which character-
izes the correlation of the data.

1) Convergence Behavior for Different Values of : Fig. 1
displays the criterion versus the iterations number for
the following set of parameters: , , and the
starting point . Three typical cases are investigated:
weak correlation [ , Fig. 1(a)], medium correlation
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Fig. 1. Convergence to the FP for three different �: (a) � = 10 , (b) � = 0:9, and (c) � = 1� 10 .

[ , Fig. 1(b)] and strong correlation [ ,
Fig. 1(c)].

Fig. 1 leads to four main comments.
• For a given , both algorithms’ numerical convergence oc-

curs for the same iteration number. Moreover, Algorithm 2
always presents a better accuracy (in terms of floor level).

• Higher the is, faster the convergence is; for ,
convergence is reached around 90 iterations, for ,
60 iterations are enough, and for , only 20
iterations are required.

• Stronger the correlation is, lower the limit accuracy
becomes.

• The improvement of Algorithm 2 in term of accuracy in-
creases with .

With this first analysis, we infer that Algorithm 2 is better than
Algorithm 1.

In Fig. 2, we have plotted the criterion versus when the
convergence has occurred. Floor level is evaluated at the 150th

iteration. Both algorithms exhibit the same behavior: the floor
level gets worth when correlation parameter increases. Floor
level is always better for the normalized algorithm than for the
Algorithm 1. Moreover, the distance between the two curves
increases with .

Fig. 3 shows the required iteration number to achieve a
relative error equal to . Plots are given as a function
of correlation parameter . Algorithm 1 is quite insensitive to
the correlation parameter influence. The number of iteration
is always close to 21. Conversely, for Algorithm 2, the iteration
number decreases with , starting at for small and
ending at for close to 1. Surprisingly, the more data are
correlated, faster the convergence is [but according to Fig. 1(c),
the floor level gets worse].

These results allow to conclude that Algorithm 2 (normal-
ized algorithm) is the best in all situations. That is why, in the
sequel, we will study parameters influence on the normalized
algorithm.
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Fig. 2. Floor level C(150) against �.

Fig. 3. Required iteration number k to achieve the relative error C = 10 .

B. Parameters Influence

This section studies the influence on the normalized algo-
rithm of the starting point and the number of reference
data.

Fig. 4(a) shows the criterion for four different initial
conditions and a medium correlation parameter :
the well-known sample covariance matrix estimate (SCME), the
true covariance matrix , a random matrix whose elements are
uniformly distributed, and the identity matrix . Floor level
and convergence speed are independent of the algorithm initial-
ization; after ten iterations, all the curves merge. Fig. 4(b) rep-
resents for various values of : 20, 200, 2000, and 4000.
Notice that convergence speed increases with , while the floor
level is almost independent of .

VII. CONCLUSION

In this paper, we have considered the problem of covariance
matrix estimation for adaptive radar detection in compound-

Gaussian clutter. The corresponding ML estimate of the covari-
ance matrix built with secondary data is known to be the solution
(if such a solution exists and is unique) of an equation for which
no closed-form solution is available. We have established in this
paper a sound demonstration of the existence and uniqueness of
this ML estimate, called fixed point estimator (FPE). We have
also derived two algorithms for obtaining the FPE. The conver-
gence of each algorithm has been theoretically proved and em-
phasized by extensive simulations which have shown the supe-
riority of one of them, the so-called normalized algorithm. The
numerical behavior of the two algorithms in realistic scenario
has been also investigated as a function of main parameters,
correlation and number of reference data, highlighting their fast
convergence and, therefore, their great practical interests. These
important results will allow the use of the FPE in real radar de-
tection scheme [15]. It remains now to analyze the statistical be-
havior of the FPE; the preliminary results in that direction have
been already obtained in [16].

APPENDIX I
REDUCTION OF THE COMPLEX CASE TO THE REAL CASE

Let be the set of definite–positive Hermitian ma-
trices and the set of 2 m 2 m symmetric matrices. Let us
define the function by

where with , symmetric matrix, the
real part of and , antisymmetric matrix, the imaginary
part. It is obvious that is a bijection between and . More-
over, we have Proposition A.1.

Proposition A.1:

where is given by (7) and by

with and the -vectors are defined as
follows:

• for the first vectors (called for clarity),

;

• for the last vectors (called ),

.

Proof: We have

Thanks to the following results: ,
, and

, Proposition A.1 follows straightforwardly.
Hypothesis H) of Section III implies hypothesis H2) of linear

independence for the real problem just defined in . Thanks
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Fig. 4. Convergence to the FP. (a) C(k) as a function of k for different starting pointsM . (b) C(k) as a function of k for various values of N : 20, 200, 2000,
and 4000. (a) Error influence with points. (b) Error influence with the number N of secondary data.

to Theorem IV.1, there exists a unique FP (up to scalar
factor) in . Thus, it remains to show that belongs to .
Thanks to Proposition A.1, if initialization of algorithm defined
in Theorem IV.2, (12) belongs to , the resulting sequence

obviously belongs to . Since this sequence
converges in , by elementary topological considerations, the
limit belongs to .

Now, since admits a unique FP (up to a scalar factor)
in , the proof of Theorem III.1 is completed. Indeed, there
exists a unique matrix (up to a scalar factor) which verifies

APPENDIX II
PROOF OF PROPOSITION V.1

If such a exists, then for every , is also
an FP of , since is homogeneous of degree one. We start by
demonstrating Lemma B.1.

Lemma B.1: The function can be extended as a continuous
function of so that, for every noninvertible ,

.
Proof: It is enough to show that, for every noninvertible

and every sequence in converging
to zero and so that is invertible, we have

Since is smooth, we may assume that for every
. We introduce the notation for the function in order

to emphasize the dependence of with respect to the -tuple
. If is an invertible matrix, let be the

-tuple . Clearly, one has for every

Fix now a symmetric matrix such that and the rank
of , , is equal to with . Thanks to the
previous equation, we may assume that , with

, where is repeated times. For ,
we write as

with and

According to that orthogonal decomposition, we write by
blocks

Then

For every , set and
. Then, for every , one has, after standard

computations using the Schur complement formula (cf. [14], for
instance), that
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and . We next compute
for and . We get

(B.23)

Lemma B.2: With the previous notations, we have

and, if , then

(B.24)

Proof: Both results are a consequence of the following fact:

(B.25)

To see that, first recall that
is definite positive, since is positive definite. Next, we
write

and we then have

where .
It is now clear that (B.25) holds true if the symmetric

nonnegative matrix is bounded. Com-
puting the norm, we end up with

where . Since , we
conclude the proof of Lemma B.2.

We next consider the diagonalization of in an orthonormal
basis, given by

for

with and . By
definition, , for every , and, with

no loss of generality, we will assume that

and .

We next establish Lemma B.3.

Lemma B.3: Let with 0 repeated
times. With the previous notations, there exist and

such that, for large enough, we have

(B.26)

Proof: By a continuity argument, it is enough to show the
existence of an index so that . Moreover, ac-
cording to hypothesis H2), it is not possible to find vectors

linearly independent such that

where and . (Oth-
erwise, there exist vectors linearly indepen-
dent belonging to the orthogonal of , which has dimension

.)
By a simple counting argument, the index , therefore, ex-

ists. Indeed, otherwise, the vectors ’s, with verify
, meaning that all the vectors , , are

orthogonal to , which is impossible. The proof of Lemma
B.3 is complete.

We can now finish the proof of Lemma B.1. Let be the
-tuple made of the ’s for . For every

, we have

Since , we apply the result of [13] which states
that the supremum of over is finite, i.e., there exists a
positive constant such that, for every ,

. Therefore, the conclusion holds true if

Thanks to (B.24), this amounts to show that

It is clear that . In addition, by using Lemma
B.3, we can write

where is bounded below and above by positive constants in-
dependent on . We finally get that
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with a positive constant independent of . By letting go to
infinity, we conclude the proof of Lemma B.1.

End of the Proof of Proposition V.1: Recall that is a
compact subset of . Then, is well defined on
and is continuous. The application reaches its maximum over

at a point . Since is strictly positive on and
equal to zero on , then , implying
that . We complete the proof of Proposition V.1
by establishing Lemma B.4.

Lemma B.4: Let be defined as previously.
Then, , which implies that is an FP of .

Proof: By definition of , one has
. By standard calculus, it results in that

and are colinear, where
for every . Since , there exists a real

number such that . Recall that, since
is homogeneous of degree zero, then

(B.27)

One deduces that .
The proof of Lemma B.4 is complete.

APPENDIX III
PROOF OF PROPOSITION V.2

We start by establishing P1). Let and with
. Then, and, for every , we have

The reasoning for the case with strict inequalities is identical.
Then, clearly, P1) follows.

We next turn to the proof of P2) . We first recall that, for every
unit vector , and , then

(C.28)

and the infimum is reached only on the line generated by .
Let and . Then, one has

More generally, the following holds true:

for every functions and and set giving a sense to the
previous inequality. Then, P2) clearly holds true. It remains to
be studied when equality occurs in P2). That happens if and only
if, for every , one has

(C.29)

Let us first show that equality occurs in (C.29) if and only if
there exists some such that

(C.30)

Indeed, for every vector with , we have

Choosing yields

Therefore, the function of given by reaches
its minimum value at . Using
(C.28), we get that is colinear to . Ex-
changing and and proceeding as previously yields that

is also colinear to , which finally im-
plies that and are themselves colinear. (C.30)
is proved.

To finish the proof, one must show that all the ’s,
, as defined in (C.30), are equal.
Set for the first indices of .

Since is a basis of and is
equal to on that basis, we deduce that .
Consider now another basis of defined by
and set . Reasoning as previously, we
obtain that , which first implies that

and, second, that .
Repeating that reasoning for any pair of -tuples of distinct
indices of , we get that, for every ,

, yielding .

APPENDIX IV
PROOF OF PROPOSITION V.3

We first establish the following fact. For every , , we
have

and then (D.31)

Indeed, it is clear that implies that .
Therefore, for every , we have

Assuming implies that, for every , we
have , i.e.,

Since , the previous equality says that
, for every . By H2), the claim (D.31)

is proved.
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We now turn to the proof of Proposition V.3. We consider ,
, such that and . From what precedes, we

also have that and . This implies
the existence of an index such that

Up to a relabel, we may assume that . We then have

(D.32)

Next, we will show by induction on the index that there
exist positive real numbers , , so that

(D.33)

In (D.33), the vectors only need to be distinct
among all the vectors . At each step of the induction,
we will have the possibility to relabel the indices in
in such a way to get (D.33). The induction starts for and,
in this case, (D.33) reduces to (D.32). Therefore, the induction
is initialized. We then assume that (D.33) holds true for some
index and proceed in showing the same for the index

. It is clear that it will be a consequence of Lemma D.1.
Lemma D.1: Let , , , such that

(D.34)

Then, there exists a vector of (to be set equal to
, up to a relabeling of ) and a positive real

number such that

(D.35)

Proof: Using (D.34), we have for every

(D.36)

Using the induction hypothesis, we also have for every
that

We next show the following claim.

C1) There exists two indices, one index and
another one , such that .

Claim C1) is a proved reasoning by contradiction. Therefore, let
us assume that , for every and

. Since and the vectors , ,
generate a vector space of dimension , we deduce that, for
every , is orthogonal to and, therefore,
belongs to an -dimensional vector space of . However,
there are indices verifying the previous fact. According
to H2), these vectors generate a vector space of
dimension in . We finally get that

. This is impossible because and claim
C1) is proved.

We now finish the proof of Lemma D.1. Choosing in (D.36)
, we get

with , thanks to claim C1). It is clear that is the vector
of needed with so that, up to relabeling, it
yields (D.35). Proofs of Lemma D.1 and Proposition V.3 are
now complete.

APPENDIX V
PROOF OF PROPOSITION V.4

We first need to create a precise definition. An orbit
is bounded in if it is contained in a compact subset of ,
i.e., there exists , such that, for every ,

.
We will show the following chain of implications

.
: Trivial (simply ).
: Assume that has a bounded orbit in ,

starting at . Then, there exists such that, for
every , , for every .

Let be an arbitrary matrix of . Then, there exists
such that . Using the homogeneity of degree
one of , property P1), and the definition of an orbit of , we get,
after a trivial induction, that

, for every . Then, the orbit associated to is
bounded in .

: Consider an orbit of starting at
and bounded in . It is then contained in a compact

of . For , set

Then, the sequence is bounded in because every
point belongs to the convex hull of , which is itself a com-
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pact subset of . For every , we have by using Proposition
V.2 that

Since is bounded in , we have that, up to extracting
a subsequence, the sequence converges to with

, as tends to . From the last equation, it follows that
.

We now consider the orbit of starting at . It defines an
increasing, bounded in sequence. It is, therefore, converging
in to an FP of .

APPENDIX VI
PROOF OF COROLLARY V.1

The proof of C1) goes by contradiction. Let with
and for some positive integer .

According to Proposition V.3, we have

Set and . It is clear that is a function from
to , homogeneous of degree one and it verifies properties

P1) and P2) of Proposition V.2. We will show that the orbit
of associated to is not bounded, which will be the desired
contradiction.

We have which is equivalent to being
positive definite. By a simple continuity argument, there exists

such that

By a trivial induction, we have , for
every , with the right-hand side of the previous inequality
tending to as tends to . Therefore, the orbit of asso-
ciated to is not bounded.

We now prove statement C2). Let and be two FPs
of . Applying P2), we have

According to C1), we have that is also an FP of
and, therefore, we have equality in P2). It implies that and

are colinear. The proof of Corollary V.1 is complete and it
concludes the argument of Theorem IV.1.

APPENDIX VII
PROOF OF LEMMA V.1

The argument goes by contradiction. We thus assume that
does not contain any periodic orbit. Let be a compact

subset of containing both orbits associated to and .

Let . Then, there exists a sequence
converging to , as tends to with being a strictly
increasing sequence of integers tending to .

Let be small enough and such that
. It is easy to see that there exists a constant

only depending on such that
. Using Proposition V.2, we have for every

(G.37)

Since is a cluster point for the orbit associated to , there
exists such that

Using (G.37) and the previous equation, there exists large
enough such that

(G.38)

We set and “maximal” with respect to (G.38), i.e.,
being the smallest positive real number so that

holds true. Then, and one
of the two previous inequalities is not strict, by maximality of .
Moreover, . Indeed, if it were not the case, then and

would be comparable and, according to Corollary V.1,
the orbit associated to would be periodic. We now consider
the subset of , made of the matrices such that there
exists such that

(G.39)

and is “maximal” with respect to (G.39).
We showed previously that is not empty since . We

next show that .
By definition of , there exists two sequences and

such that converges to , as tends
to . Up to considering a subsequence in the compact ,
we may assume that converges to some .
Passing to the limit in (G.39), we get

(G.40)

If , then necessarily and is “maximal” with
respect to (G.40). Since is eventually strictly increasing, we
get . Setting

, then belongs to , since the latter is an invariant
set with respect to . Choosing “maximal” with respect to

we first have that (otherwise, we would have a periodic
orbit) and . We finally proved that with

. This is a contradiction with the minimality of .
Therefore, , which implies that , i.e.,
contains a periodic orbit. Lemma V.2 is proved.
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APPENDIX VIII
PROOF OF LEMMA V.2

Let whose associated orbits are periodic, with
respective (positive) periods and .

We first show that and are colinear, which will imply
that .

For , the orbit associated to is the set
. Consider and

. Then,
and, for every , we have

It implies that .
By Corollary V.1, we get that . It implies that all the
previous inequalities must be in fact equalities and, in particular,
we have . By P2), we deduce that
and are colinear. It remains to be shown that a periodic orbit
reduces to a single point.

Consider such that

,
if no condition .

We have to prove that .
Since the orbit associated to every , , is again

and thus finite, we deduce that must be colinear
to , according to what precedes. Then, for every

, we have , for some . Obviously,
. In particular, we have , implying

that, either or . By C1) of Corollary
V.1, we get that is an FP of . The proof of Lemma V.1 is
complete.
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