






image at random positions.

Fig. 3: Example of change generated (SNR: random between [0; 30]
dB, position: random on the image). Top-Left: Image I. Top-Right:
Image J (changes are circled in red). Bottom-Left: Image of targets.
Bottom-Right: Steering vector of one target.

The steering vector is chosen through a random complex
Gaussian distribution. The SNR of the targets can be controlled
by choosing the norm of the steering vector. It enables us to
measure statistical performances. The SNR is defined as the
ratio of the target power and the mean power value of a square
window of size 20 × 20 around the position of the target.
Additional Gaussian noise was added into the image to take
into account the difference in speckle, and its variance was
estimated on the dark zones of the image.

The figure 3 shows an example of image with 20 targets of
random SNR between 0 and 30 dB.

B. Results

Figure 4 shows the plots of PFA-threshold for both mono-
variate and multivariate algorithms. These were computed
using the detection algorithms between the image at t0 and an
image t1 generated without change. The curves were plotted
for several sizes of analysis windows. We can see that its
size is an important parameter in the multivariate case: for
the multivariate GLRT, a size of 5 × 5 the PFA is not well
regulated as the number of secondary data for the estimation of
the covariances matrices is the bare minimum. Having a large
window allows a better regulation, but a too large window
affects the performances of detection.

We choose to test the detection performances with a window
of 7 × 7 for Λ̂GLRT−multi and 5 × 5 for Λ̂GLRT−mono and
for a PFA fixed for 10−3. The threshold for the detection
is obtained using the curves at Figure 4. Figure 5 shows the
detection test for both algorithms on the example presented
at Figure 3. We notice that in the multivariate case, the
detector performs better. Indeed, some low SNR targets, which

Fig. 4: PFA = f(λ) for different sizes of window (computed on
1500 × 1500 samples). Top : Λ̂GLRT−mono. Bottom: Λ̂GLRT−multi.

were not detected in monovariate case, are detected using the
multivariate algorithm (circled in red). There is also less false
alarms on the test image. We note that the localisation of the
detection is degraded because of the decimation. There is a
compromise to be done between the precision we want and the
expected performances of detection. This is done by choosing
the number of sub-bands and sub-looks.

Fig. 5: Detection test at PFA = 10−3. Left: Λ̂GLRT−multi (7 × 7).
Right: Λ̂GLRT−mono (5 × 5).

Monte-Carlo trials have been done in order to measure the
statistical performances of the new detector and compare it to
the monovariate one. A single target is placed at a random
location which varies for each trial. Figure 6 shows a ROC
(Radar Operational Curve) plot for a SNR defined at -5 dB.
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We can see that the multivariate detector performs better,
especially at low PFA where the PD is better by at least 0.2.

Fig. 6: Top: PD = f(PFA) computed on 100 Monte-Carlo trials
(SNR = −5dB, random position of the target and random steering
vector). Bottom: PD = f(SNR) computed on 100 Monte-Carlo trials
(PFA = 10−3, random position of the target and random steering
vector).

Figure 6 shows a PD-SNR plot for PFA = 10−3. The
probability of detection is similar at low SNR, which is
expected as the target is shrouded in the clutter. For the range
of SNR [−15, 20] dB, the performances of the multivariate
detector are better. Indeed, for a given PD, a SNR gain is
noticed: at least 1 dB for PD = 0.2 and as much as 10 dB
for PD = 0.9. These simulations show that the multivariate
GLRT performs better overall than the monovariate GLRT.

V. CONCLUSION

This paper proposed a new methodology for CD on
monovariate SAR images and tested it through simulations
which demonstrated better performances than the classic
algorithm on monovariate images. The increased performances
are obtained with a compromise on the spatial resolution of
the detection. Nonetheless, the spectral and angular diversity
allows for a more accurate detection of the change in terms
of probability of detection.

This work was done using a Gaussian model for the data,
which is a questionable hypothesis for highly-textured images.
It will be extended to SIRV and CES distributions in future
works.
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