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Abstract—In many statistical signal processing applications, the
estimation of nuisance parameters and parameters of interest is
strongly linked to the resulting performance. Generally, these ap-
plications deal with complex data. This paper focuses on covari-
ance matrix estimation problems in non-Gaussian environments,
and particularly the -estimators in the context of elliptical dis-
tributions. First, this paper extends to the complex case the re-
sults of Tyler in [D. Tyler, “Robustness and Efficiency Properties
of Scatter Matrices,” Biometrika, vol. 70, no. 2, p. 411, 1983]. More
precisely, the asymptotic distribution of these estimators as well
as the asymptotic distribution of any homogeneous function of de-
gree 0 of the -estimates are derived. On the other hand, we show
the improvement of such results on two applications: directions
of arrival (DOA) estimation using the MUltiple SIgnal Classifica-
tion (MUSIC) algorithm and adaptive radar detection based on the
Adaptive Normalized Matched Filter (ANMF) test.

Index Terms—Complex -estimators, covariance matrix esti-
mation, elliptical distributions, robust estimation.

I. INTRODUCTION

M ANY signal processing applications require the knowl-
edge of the data covariance matrix. The most often used

estimator is the well-known Sample Covariance Matrix (SCM)
which is the Maximum Likelihood (ML) estimator for Gaussian
data. However, the SCM suffers from major drawbacks. When
the data turn out to be non-Gaussian, as for instance in adap-
tive radar and sonar processing [2], the performance involved
by the SCM can be strongly degraded. Indeed, this is the case
in impulsive noise contexts and in the presence of outliers as
shown in [3]. To overcome these problems, there has been an
intense research activity in robust estimation theory in the sta-
tistical community these last decades [4]–[6]. Among several
solutions, the so-called -estimators originally introduced by
Huber [7] and investigated in the seminal work of Maronna
[8], have imposed themselves as an appealing alternative to the
classical SCM. They have been introduced within the frame-
work of elliptical distributions. Elliptical distributions, origi-
nally introduced by Kelker in [9], encompass a large number
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of well-known distributions as for instance the Gaussian distri-
bution, or the multivariate Student (or ) distribution. They may
also be used to model heavy tailed distributions by means of
the K-distribution, as may be met for instance in adaptive radar
with impulsive clutter [10]–[12]. -estimators of the covari-
ance matrix are however seldom used in the signal processing
community. Only a limited case, the Tyler’s estimator [13] also
called the Fixed Point Estimator [14] has been widely used as
an alternative to the SCM for radar applications. Concerning the
-estimators, notable exceptions are the recent papers by Ollila

[15]–[19] who advocates their use in several applications such
as array processing. The -estimators have also been studied
in the case of large datasets, where the dimension of the data is
of the same order as the dimension of the sample [20].
One possible reason for this lack of interest is that their sta-

tistical properties are not well-known in the signal processing
community, as opposed to the Wishart distribution of the SCM
in the Gaussian context. They have been studied by Tyler [21] in
the real case. However, in signal processing applications, data
are usually complex and the purpose of this paper is to derive the
asymptotic distribution of complex -estimators in the frame-
work of elliptically distributed data. This result is also provided
in [15] but without proof. We will also extend to the complex
case, a property initially derived by Tyler in [1]: we show that
in the complex elliptical distributions context, the asymptotic
distribution of any positive homogeneous functional of degree
0 of estimates such as -estimates and the SCM, is the same
up to a scale factor. This result, useful for applications, extends
the one proposed in [15]. Thus, for a Gaussian context and for
signal processing applications which only need the covariance
matrix up to a scale factor, for example Direction-of-Arrival
(DOA) estimation or adaptive radar detection, the parameter es-
timated has the same mean square error when estimated with
the SCM or with an -estimator with a few more data (de-
pending on ). Moreover, when the context is non-Gaussian or
contains outliers, the performance obtained with -estimators
is scarcely influenced while it is unreliable and possibly com-
pletely damaged with the SCM as shown for instance in [3]. We
illustrate this effect using the MUSIC method and the Adaptive
Normalized Matched Filter (ANMF) test introduced by Kraut
and Scharf [22], [23]. It is also illustrated by Ollila in [16], for
MVDR beamforming.
This paper is organized as follows. Section II introduces the

required background and Section III the known properties of
real -estimators. Then Section IV provides our contribution
about the estimators asymptotic distribution. Eventually, in
Section V, simulations validate the theoretical analysis and
Section VI concludes this work.
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Vectors (resp. matrices) are denoted by bold-faced lowercase
letters (resp. uppercase letters). , and respectively repre-
sent the conjugate, the transpose and the Hermitian operator.

means “distributed as”, stands for “shares the same distribu-
tion as”, denotes convergence in distribution and denotes
the Kronecker product. vec is the operator which transforms a
matrix into a vector of lenth , concatenating its
columns into a single column. Moreover, is the iden-
tity matrix, the matrix of zeros,
where is the matrix with a one in the position and
zeros elsewhere and is the commutation matrix which trans-
forms into . Eventually, represents the
imaginary part of the complex vector and its real part.

II. BACKGROUND

A. Elliptical Symmetric Distribution

Let be a -dimensional real (resp. complex circular)
random vector. The vector has a real (resp. complex) ellip-
tical symmetric distribution if its probability density function
(PDF) can be written as

(1)

where is any function such that (1) de-
fines a PDF, is the statistical mean and is a scatter matrix.
The scatter matrix reflects the structure of the covariance ma-
trix of , i.e. the covariance matrix is (if it exists) equal to up
to a scale factor. This real (resp. complex) elliptically symmetric
distribution will be denoted by (resp. ).
One can notice that the Gaussian distribution is a particular case
of elliptical distributions. A survey on complex elliptical distri-
butions can be found in [15].
In this paper, we will assume that . Without loss of

generality, the scatter matrix will be taken to be equal to the co-
variance matrix when the latter exists. Indeed, when the second
moment of the distribution is finite, function in (1) can al-
ways be defined such that this equality holds. If the distribution
of the data has a none finite second-order moment, then we will
simply consider the scatter matrix estimator.

B. Generalized Complex Normal Distribution

As written before, the Gaussian distribution is a particular
case of elliptical symmetric distributions. However, in the com-
plex framework, it is true only for circular Gaussian random
vectors. We now present the generalization of this distribution
as presented by Van den Bos in [24].
Let be a -dimensional complex random vector.

The vector is said to have a generalized complex normal dis-
tribution if and only if has a normal
distribution. This generalized complex normal distribution will
be denoted by where is the mean,

the covariance matrix, and
the pseudo-covariance matrix.

C. -Estimators of the Scatter Matrix

Let be an -sample of -dimensional
real (resp. complex circular) independent vectors with

(resp. ),
. The real (resp. complex) -estimator of

is defined as the solution of the following equation

(2)

where the symbol stands for in the real case and for in the
complex one.

-estimators have first been studied in the real case, defined
as solution of (2) with real samples. Existence and uniqueness
of the solution of (2) has been shown in the real case, pro-
vided function satisfies a set of general assumptions stated
by Maronna in [8]. These conditions have been extended to the
complex case by Ollila in [17]. They are recalled here below in
the case where :
— is non-negative, non increasing, and continuous on

.
— Let and .

, is increasing, and strictly increasing on the interval
where .

— Let denote the empirical distribution of
. There exists such that for every

hyperplane , , .
This assumption can be strongly relaxed as shown in [25],
[26].

Let us now consider the following equation, which is roughly
speaking the limit of (2) when tends to infinity:

(3)

where (resp. ) and where
the symbol stands for in the real case and for in the com-
plex one.
Then, under the above conditions, it has been shown for the

real case in [8], [26] that:
— Equation (3) (resp. (2)) admits a unique solution (resp.

) and

(4)

where is the solution of ,
where , see e.g. [6] (resp.

).
— A simple iterative procedure provides .
— is a consistent estimate of .

The extension to the complex case of previous results has been
done in [15].

D. Wishart Distribution

The real (resp.complex) Wishart distribution
(resp. ) is the distribution of , where
are real (resp. complex circular), independent identically dis-
tributed (i.i.d), Gaussian with zero mean and covariance matrix
. Let be the related SCM which
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will be also referred to, as a Wishart matrix. The asymptotic
distribution of the Wishart matrix is (see e.g. [27])

(5)

We now introduce real -estimators asymptotic properties
since they are used as a basis for the extension to the complex
case.

III. REAL -ESTIMATORS PROPERTIES

A. Asymptotic Distribution of the Real -Estimators

Let be a real -estimator following Maronnas’s condi-
tions [8], recalled in Section II-C. The asymptotic distribution
of is given by Tyler in [21]:

(6)

where ,
and are given by ([21]):

(7)

with

and is given in (4).

B. An Important Property of Real -Estimators

Let be a fixed symmetric positive-definite matrix and
a sequence of symmetric positive definite random matrices of
order which satisfies

(8)

where ,
and are any real numbers such that is a positive matrix.
Let be a -dimensional multivariate function on the set

of positive-definite symmetric matrices with continuous
first partial derivatives and such as for all
. Then under conditions (8), Tyler has shown in [1] Theorem
1, that

(9)

where .
By noticing that, in a Gaussian context the SCM satisfies

and (Eq. (5)) and that real -estimators verify
and (Eq. (6)), Tyler’s theorem shows that

and share
the same asymptotic distribution.

In practice, may be a function which associates a pa-
rameter of interest to a covariance matrix. This scale-invariant
property has also been exploited in [16]. The concerned signal
processing applications are those in which multiplying the co-
variance matrix by a positive scalar does not change the result.
This is the case for instance for the MUSIC method in which the
estimated parameters are the signals DOA. Another example is
given by adaptive radar processing in which the parameter is the
ANMF test statistic [22], [23]. Here, is defined by:

The aim of the next section is to extend those results to the
complex case, which is the frequently met framework for most
signal processing applications.

IV. MAIN RESULTS IN COMPLEX CASE

A. Asymptotic Distribution of the Complex -Estimator

Let be an -sample of -dimensional com-
plex independent vectors with ,

. We consider the complex -estimator which
verifies (2), and we denote the solution of (3).
Theorem IV.1: The asymptotic distribution of is given

by

(10)

where and are defined by

(11)

with

(12)
and

where is the solution of , where
.

This result is also given in [15] with others assumptions but
without proof.

B. Proof of Theorem IV.1

1) Notations: Let us first introduce the following linear
one-to-one transformation of a Hermitian matrix into
a real symmetric matrix:

(13)
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The inverse transformation is given by where
. Function has some useful properties. Let

and be the following vectors:

(14)

which are both distributed according to where
.

Then, it may be shown that

Let , one has and

.
Let us also introduce

(15)

It is easy to show that (2) defining the complex -estimator
, is equivalent to the following equation involving :

(16)

where . Roughly speaking, (16) defines a real
-estimator involving the real samples and .
Let and be respectively the two -estimators de-

fined by

(17)

and let , be the associated solutions of

By applying on (17), one obtains

(18)

Moreover, since has the same distribution as ,

(19)

2) An Intermediate Result:
Lemma IV.1: and have the same Gaussian

asymptotic distribution.
Proof IV.1: See Appendix A.1.

3) End of Proof of Theorem Theorem IV.1: By using (15)
and the inverse of , one obtains . From the
Lemma IV.1 . has a normal distribution. It follows that

has a generalized complex normal distribution.
Given the property where
, , are 3matrices, and using the fact that ,

one has

(20)

Using lemma IV.1, and the equalities (18) and (19), (20) gives

(21)

by using the asymptotic covariance of and the equalities
and .

Using the expression given in (6), and taking into account that
the are -dimensional vectors, we have

(22)
where and will be specified later.
A consequence of lemma IV.1 is that . Indeed,

from the definition of , one has

The first term of the right hand side is the definition of while
the second one is the one of . Then, as , one has

.
Therefore, , which leads to

(23)

Now let us turn to the and coefficients. Using (6), one
has

(24)
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where , and is the
solution of

(25)

Since , (25) is equivalent to

(26)

Moreover let . Then has the same
distribution as so that (25) and (26) are also equivalent to

(27)

We finally obtain the expression of .
a) Asymptotic pseudo-covariance matrix: is defined as

(28)

Using the commutation matrix , one has

(29)

since is Hermitian. Thus one can write

(30)

where .
Therefore, , which leads to the result of theorem

IV.1 after a few derivations, and concludes the proof.
In the following part, we extend the result of Section III-B to

the complex case.

C. An Important Property of Complex -Estimators

Theorem IV.2:
• Let be a fixed Hermitian positive-definite matrix and
a sequence of Hermitian positive-definite random matrix
estimates of order which satisfies

(31)

with

(32)

where and are any real numbers.
• Let be a -dimensional multi-
variate function on the set of complex Hermi-
tian positive-definite matrices, possessing continuous first
partial derivatives in a neighborhood of and such as

for all .
Then,

(33)

where and are defined as

(34)

and with where
.

Proof IV.2: One can first notice that .
Indeed, since for all , the subspace
generated by the vector is an iso- region. Therefore,

which can be seen as a gradient of , is orthogonal to
.

A first order approximation of gives

(35)

Thus one has,

(36)

The proof is similar for .
Notice that results of theorem IV.2 could be proved in a sim-

ilar way (i.e. thanks to the Delta-method) from the asymptotic
distribution of the shape matrix derived in [16].
Similarly to the real case, when the data have a complex

Gaussian distribution, the SCM is a complex Wishart matrix.
Moreover, the SCM estimator verifies the conditions of the the-
orem and its coefficients are equal to (1, 0). Complex
normalized -estimators also verify the conditions of the the-
oremwith . Thus they have the same asymp-
totic distribution as the complex normalized Wishart matrix, up
to a scale factor depending on the considered -estimator.
The same conclusion holds for the Fixed Point Estimator [13],
[14] since it verifies the assumptions of theorem IV.2 for a spe-
cific standardization (see [28] for its asymptotic distribution).

V. SIMULATIONS

The results of this paper are illustrated using the complex ana-
logue of Huber’s -estimator as described in [17]. The corre-
sponding weight function of (2) is defined by

(37)

where and depend on a single parameter ,
according to

(38)

(39)



MAHOT et al.: ASYMPTOTIC PROPERTIES OF ROBUST COMPLEX COVARIANCE MATRIX ESTIMATES 3353

where is the cumulative distribution function of a dis-
tribution with degrees of freedom. Thus Huber estimate is the
solution of

(40)

where is the indicator function.
The first summation corresponds to unweighted data which

are treated as in the SCM; the second one is associated to nor-
malized data treated as outliers. In a complex Gaussian context
and when tends to infinity, it may be shown that the propor-
tion of data treated with the SCM is equal to . Moreover the
choice of and according to (38) and (39), leads to a consis-
tent -estimator of the covariance matrix ( in (4)).
In the following simulations, .

A. Asymptotic Performance of DOA Estimated by the MUSIC
method, With the SCM and Huber’s -Estimator

Now let us turn to theorem IV.2. To illustrate our result, we
consider a simulation using the MUltiple SIgnal Classification
(MUSIC) method, which estimates the Directions Of Arrival
(DOAs) of a signal. We consider in this paper a single signal
to detect. However, the multi-sources case can be similarly
analyzed. Under this assumption, let us define the
estimated DOAs obtained from the MUSIC pseudo-spectrum:

.
A uniform linear array (ULA) with half wavelength

sensors spacing is used, which receives a Gaussian stationnary
narrowband signal with DOA . The array output is corrupted
by an additive noise which is firstly spatially white Gaussian and
secondly K-distributed with shape parameter 0.1. Moreover, the
SNR per sensor is 5 dB and the snapshots are assumed to be
independent. The MUSIC method uses the estimation of the co-
variance matrix with the snapshots and here, the employed
covariance matrix estimators are the SCM and the complex ana-
logue of Huber’s -estimator as defined in (40).
Fig. 1 depicts the Root Mean Square Error (RMSE) in de-

grees, of the DOA estimated with data for the SCM and for
Huber’s estimate, when the additive noise is white Gaussian.
The RMSE of the DOA estimated from the Huber’s -estimate
calculated using sample , where , is
also represented. We observe that for large enough
, this curve and the SCM one overlap, as expected from

theorem (IV.1).
Fig. 2 depicts the RMSE of the DOA estimated with data

for the SCM and for Huber’s estimate, when the additive noise
is K-distributed with shape parameter 0.1. A shape parameter
close to 1 ( 0.9) indicates a distribution close to the Gaussian
distribution whereas it indicates an impulsive noise when the
parameter is close to 0 ( 0.1). Thus, the noise being quite im-
pulsive in our example, we observe that the RMSE of Huber’s
-estimator is smaller than the SCM, the latter giving worse

results than in the Gaussian case. It points out the fact that the
SCM gives poor results as soon as the context is far from a

Fig. 1. One source DOA RMSE for Huber’s estimate and
the SCM, for spatially white Gaussian additive noise.

Fig. 2. One source DOA RMSE for Huber’s estimate and
the SCM, for K-distributed additive noise with a shape parameter .

Gaussian environment whereas Huber’s -estimator is more
robust and much more interesting in that case.

B. Asymptotic Performance of the ANMF Test With the SCM
and Huber’s -Estimator

Let us give a second illustration of theorem IV.2. We con-
sider an adaptive radar receiving a vector of length . The
estimated covariance matrix of the environment is and we
try to detect signals of steering vector . This steering vector
defines the DOA and speed of the target, using the Doppler fre-
quency. The ANMF test statistics [29] is

(41)

Firstly, we have considered a Gaussian context and computed
. In Fig. 3 the vertical scale represents the variance of

obtained with the SCM and the complex analogue of Huber’s
-estimator defined in (2). The horizontal scale represents the

number of samples used to estimate the covariance matrix. A
third curve represents the variance of for data. As one
can see, it overlaps the SCM’s curve, illustrating theorem IV.2.
The coefficient is equal to 1.067.
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Fig. 3. Variance on the ANMF detector for Huber’s estimate and the SCM
estimate, with spatially white Gaussian additive noise.

Fig. 4. Variance on the ANMF detector with theHuber’s estimate and the SCM,
for K-distributed additive noise with various shape parameters and

.

Secondly, we have considered a K-distributed environment,
with shape parameter firstly equal to 0.1 and then 0.01 for a
more impulsive noise. The Fig. 4 which scales are the same as in
Fig. 3, brings once again to our minds that the SCM is not robust
in a non-Gaussian context contrary to Huber’s -estimator. In-
deed, the more the noise differs from a Gaussian noise, the more
the detector’s variance is deteriorated in that case while it still
gives good results with Huber’s -estimator.

VI. CONCLUSION

In this paper we have analyzed the statistical properties of
complex -estimators of the scatter matrix in the framework
of complex elliptically distributed data. Firstly, using existing
results for real -estimators, we have derived the asymptotic
covariance in the complex case. Simulations have checked that
when the number of samples increases, the -estimator co-
variance tends to its theoretical asymptotic value. Secondly, we
have extended an interesting property of real -estimators to
the complex case. This property states that the asymptotic dis-
tributions of any homogeneous function of degree zero of -es-
timates and Wishart matrices, are the same up to a scale factor.

This result has many potential applications in performance anal-
ysis of array processing algorithms based on -estimates of the
covariance matrix.

APPENDIX

Proof A.1: Lemma IV.1

A. Asymptotic Behavior of and

Let us set
• ,
• and
• .

Since is a consistent estimate of , when , we
have , considering small. Thus we have

A first order expansion of gives
which leads to

(42)

with and . From (17), we
obtain

Since and
, one has the

following equation:

(43)

This leads to

(44)

Let us denote
. Then the previous equation is equivalent to

(45)

In (45) we have
• where

and
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•
using (4) with and

replacing by .
Now let us denote

. We have , where follows a zero mean
Gaussian distribution.
Consequently, the Slutsky theorem gives

(46)

Moreover, one can notice that

which gives, taking into account (46),

(47)

Using (18), we also have

(48)

where .

B. Asymptotic Behavior of

Let us denote . Since ,
one has .
For all matrices of the form , .

Therefore, since , . One has
. Therefore

and . This leads to
.

When , since is a consistent estimate of ,
, with small. Similarly to the first part

of the proof on has,

Thus, deriving from (16) we obtain

Then using the operator, this equation leads to

This is equivalent to

which leads to

where

.
Using previous notation , we obtain

One can notice that since the have the
same distribution as the . Moreover

and
. Therefore we obtain

This leads to the conclusion that shares the same asymp-
totic distribution as .
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