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ABSTRACT

Theoretical approach of the broad-band time-frequency
problems has led to consider new time-frequency distribu-
tions affiliated with the affine group of clock changes. Due
to their origin these distributions involve stretched forms
of the signals which are not easy to compute by standard
techniques. The object of the paper is to solve this diffi-
culty by giving efficient algorithms founded on the use of
the Fast Mellin Transform.

1. INTRODUCTION.

The class of affine time-frequency distributions is the out-
come of a theoretical investigation concerning the interpre-
tation of non-stationary broad-band signals ([1] for a re-
view). This class consists of bilinear functionals of the signal
and is connected with the affine group in the same way as
Cohen’s class [2] is with Heisenberg’s group. Specific forms
have been selected which generalize in a certain sense the
Wigner-Ville distribution and it is the purpose of this paper
to give a practical computational procedure for these forms.
Recall that the affine group of time dilations a > 0 and
translations b € R acts upon the physical signal s(t) as:

s(t) — " s(a~1(t — b)) (1)

If the Fourier transform S(f) of the signal s(¢) is defined
by:
o .
sn=[ erwa @)
-0

the action reads:

S(f) = Sap(f) = a"™ e ™/ S(af) 3)

The real number r is related to the physical dimension of
the signal. A standard choice however is r = —1/2.

Transformation (3) requires to introduce the invariant
scalar product:

(5,5 = / SHS" DI & @

oo

The affine family of greatest potential interest for signal
theory is the so-called diagonal subclass given by [3]:

P(t,f) =| f |7r=a¥2 [ e2ntf(Aw-M(-u)
S(fAu)S* (fAM=w))p(w) du (5)

In this expression, function y is fairly arbitrary while func-
tion X, beside being positive, satisfies a few technical con-
ditions. Specific forms of A which lead to localization prop-
erties are [1]:

Cu_\ P
Ap(w) = (kc—e:;ﬁ) , <0 (6)

The parameter ¢ occurring in (5) is a real number which
depends on the meaning of P. The classical choice ¢ = 0
is consistent with the interpretation of P as a sort of prob-
ability law. The greatest number of properties, including
Moyal’s relation and localization, is obtained for the lim-
iting case k = 0 in (6) and a particular function g. The
corresponding distribution which will be noted Fo is given
by:

Po(t, f) =| f [Proov? [0 e2intiu x @
s (fzs,i;/uz/g) S (f21;18nnhu:f;2) (hinﬁu/?) S du

From a computational point of view this formula may look
impressive. In fact the use of an adequate Mellin transform
reduces the task of its implementation to just a few FFT.
The method can also be used for computing any affine dis-
tribution in the diagonal subclass (5).

In Section 2, we recall the form of the discrete Mellin
transform connecting geometric samples of the signal S(f)
to arithmetic samples of its Mellin transform [4]. The ap-
plication of sampling conditions is discussed and a practical
procedure is proposed. An algorithm for the computation
of the diagonal affine distributions is given in Section 3. Fi-
nally , in Section 4 some examples of application to math-
ematical signals are presented and discussed.

2. THE MELLIN TRANSFORM AND ITS
DISCRETIZATION.
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Expression (5), when written with a positive A(u) function,
does not involve any cross terms between positive and nega-
tive frequency parts of the signal. This property, combined
with the fact that the distribution associated with a real
signals s(t) is an even function of the f variable, permits to
consider the implementation of (5) for analytic signals only.

The Mellin transform we use operates on the analytic
signal Z(f) by the formula:

M€ [Z](ﬂ) - ‘/Ooo Z(f) e2imES f2:'1r;3+r df (8)

and can be inverted by:
Z(f) — /oo Mf[Z](ﬁ)e—zirEf f—2i7rﬂ—r—l dﬂ (9)

In these expressions ¢ répresents a real parameter which will
be interpreted below. The basic feature of transformation
(8) appears when considering the action of a dilation of
factor a (a > 0) around a chosen time ¢. In fact, this
operation which is defined by:

2(f) — Z'(f) = a0 2(af)  (10)

is simply represented in Mellin’s space by the multiplica-
tion:

MHZ)(8) — M4(Z')(8) = a~ %" ME[Z)(B) (11)

Other properties that are essential in the following are Par-
seval’s formula and the relations between multiplication and
convolution in the two spaces [4]. In particular, we have:

MEfT 37 7, 2,)(8) = (ME(24] » ME[2))(B)

(12)
where the *-operation is a convolution in 8. The Discrete
Mellin transform (DMT) concerns signals with limited ex-
tension both in the f and 8 variables. In a general manner
it relates N geometrically spaced samples of the signal in
frequency to N arithmetically spaced samples of its Mellin
transform. If the signal Z is limited to the band (f1, f2)
and if the support of its Mellin transform is (81, B2), then
the DMT is given by [4]:

Mf (Nlnu) = (13)
SN-1 [Vk(r-}-l)ezi;rff;uk Z(fiv*)In V] Q2ivkp/N

This is a linear system characterized by a ratio v and a
number N which must verify the two conditions:

W>hlfi , (ny) > -4 | (14)

in order to avoid aliasing. As a consequence, the number
N of complex samples to deal with must be no less than:

N =| 2 By :ln% (15)
1

As seen on formula (13), the efficient computation of a DMT
can be performed by recycling any FFT algorithm.

There is in general no a priori knowledge of the sup-
port of the Mellin transform of a signal. However, as noted
in [4], it can be asserted that the Mellin transform of any
band limited signal of finite duration has a bounded sup-
port which can be determined directly. This operation is
founded on the time-frequency interpretation of the Mellin
variable given by (7). For example, if the signal has sup-
ports (§ ~ T/2,£ + T/2) in time and (£, f2) in frequency,
it will be located in the time-frequency half-plane between
the two hyperbolas:

T
t:d:%’-+§,ﬁo=-2-f2 (16)

Such a simple geometrical analysis is sufficient to assert
that, in this case,the support of the ¢&-Mellin transform of
the signal will be the interval (=Bo, Bo).

In fact the above analysis is not only useful for estimating
the support of the £&-Mellin transform of a given signal but
also for choosing a value of the parameter ¢ which minimizes
the size of this support. Such an operation is important in
order to limit the number (15) of samples to consider in the
applications.

3. COMPUTATION OF AFFINE
TIME-FREQUENCY DISTRIBUTIONS

The Mellin transform (8)-(9) is of great help in the task
of implementing expressions of the form (5). This fact will
be illustrated first with the computation of the particular
distribution (7). Hints will then be given for the extension
to the general form (5).

For economical reasons we systematically use the Mellin
transform (8) corresponding to £ = 0 and denote it by M.
The procedure will thus operate efficiently when applied
to signals located about time t = 0. In other cases the
algorithm will have to be inserted between two opposite
time translations acting respectively on the signal and on
its time-frequency representation.

3.1 Principle of the computation of P,.

First the half-plane (f > 0) is reparametrized by setting
¥ = ft and the notation P, is introduced by:

f’O(‘Yaf):PO(t’f) (17)

Then expression (7) is rewritten as:

Po(7, f) = Fr179 [2 Do(uho(=u)]H! fr41
Z(fr0(u)Z*(fAo(—u)) eX™7% dy (18)
with
uet/?

M) = Sk a2
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After multiplication of this equation by f~""!1%9, a Mellin
transform with respect to f is performed. Thanks to rela-
tions (11)-(12) the result becomes:

M7=+ Py(y, I(B) = [To, ¥ x  (19)
[ffio X(F,u)X*( - B, —u) dﬁ'} du

where

X(B,u) = do(u)~*" M[Z)(6) (20)

The expression inside brackets in (19) is a cross-correlation
which can be computed in terms of the Fourier transform
F3(0,u) of X(B,%u). The result leads to a new form of
(19) which is written:

M{f=r=1%9 Bo(y, IO = [, ™ x - (21)
[ [ Fy(0,u) = (8, u)einh® da] du

Finally, inverting the Mellin transform by (9) and switch-
ing back to the time variable yields the formula to be dis-
cretized:

Po(t, f) = (22)
2R [£~7 [3° Fy(In f,u) F*(In £, u)e "/ du]

where R denotes the real part operation.

3.2. Algorithm

There are two main steps in the discretization of (22),
namely the computation of Fi and the Fourier transform
with respect to u. The domain (0,u0) of u is such that
both A(u) and A(—u) stay within the interval (f1/f2, f2/f1).
Once ug is determined, the number M of samples in u is
chosen such that:

a

M > BT

T e=f/h (23)
Step 1: Suppose we start with a signal Z geometrically
sampled on (fi1, f2) with the ratio v = (fz/fl)l/N, where N
is the number of points. For any v = nuo/M, 0<n < M-
1, compute the Fourier transform of X given by (20) with
respect to 3. Since the result is a convolution, the number
of samples in f-space must be doubled to avoid aliasing.
This is achieved by padding the signal with N zeros in f-
space. Functions Fy are then obtained by discrete FFT on
X. Here we notice that only N samples will be significant.
The constraint on N comes from the Mellin transformation
and is identical with (15) which reads here:

alna

N> BT

(24)

4 —
Step 2: Perform the u-Fourier transform in (22) which is
expressed by the discrete formula:

M-1
Plk,p] = f{v=% > Fy[p,n]F[p, n]e /M (95)

n=0

where 0 < k<M -1,0<p<N-1.

The approximate complexity of this algorithm can be ex-
pressed in terms of the number of FFT performed. If the
time-frequency representation Py(t, f) is characterized by
(M, N) points respectively in time and frequency, we have
to deal with (2M + 1) FFT of 2N points and (V) FFT of
M points.

In the limit of narrow-band signals, relations (23) and
(24) are reduced to M > 2BT and N > BT respectively.
This result can be compared with what is usually obtained
when computing Wigner-Ville’s function [5] [6].

3.3. Computation of distributions of the form (5)

For these distributions the u-integral in the definition
formula is no longer a Fourier transform. This property
can however be recovered by a change of variable whenever
function ®(u) = A(u) — A(—u) is monotonous. This is so,
in particular, for functions in family (6). In such a case,
performing explicitly the change of variable v = ®(u) in (5)
(written with Z(f)) allows the rewriting of this equation
under the form:

R ]r+1

P =P N=r*1"1 [ [iwic-v)

FRZ(fA@)Z*(fA(=v))e ™ fi(v)dv  (26)

where the notations are: v = tf, A(v) = A[®~'(v)] and
where the odd-parity property of &' has been used explic-
itly. The new function fi is obtained from yu by taking into
account the change of integration measure and the factor
@A (=),

The computation algorithm for (26) is quite similar to the
algorithm for Po. The main change comes from the exis-
tence of the extra factor fi(v) in the final Fourier transform.
Thus the numerical computation of any distribution (5) in-
volves basically the same kind of work. The only additional
problem in the general case is the inversion of function ®.
Although such an operation is not always easy analytically
it presents no difficulty numerically and does not actually
add to the numerical work.

4. APPLICATION TO PARTICULAR SIGNALS

The above procedure has been applied to signals described
by mathematical functions of the frequency. In this case,
the geometric sampling of the signal is easy to obtain and
the algorithm can be applied directly. Figures 1 to 3 are
Py-representations involving hyperbolic signals of the form:

Z(f) — f——r—le—'.)i?ralnf (27)

The P, representation of this signal is mathematically local-
ized on a hyperbola in the time-frequency half-plane. Fig-
ure 1 gives the numerical form of the result. If the analyzed
signal is composed with two hyperbolic signals, cross-terms
occur which can be observed on Fig. 2 and 3.

The P, representation of a narrow-band signal is very
close to its Wigner-Ville representation. This property can
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be verified on Fig.4 which gives the Py-representation of a
chirp (linear group delay modulation).

5. CONCLUSION

Computation of the affine time-frequency distributions can
be efficiently performed with the help of the Discrete Mellin
Transform. The algorithm involves only FFT routines and
runs very fast. This implementation allows to consider
the time-frequency representations as practical tools for the
study of broad-band signals.
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