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ABSTRACT

Wavelet analysis is characterized by the constructive inter-
vention of dilations and dilations in physics are associated
with changes of measurement units. This double observa-
tion is at the basis of the introduction of the dimension-
alized wavelet transform as a technique allowing to adapt
the representation of dilations to the physical dimension of
the field under study. An imaging process can then be built
in accordance with the physical meaning required for the
description. Lengthy general developments are avoided by
illustrating the method with the practical problem of radar
or sonar imaging of targets.

1- INTRODUCTION

Practical study of communication signals requires the
use of a clock as a measurement device but any choice of
it remains free. This classical observation is at the basis
of the general idea of equivalence between the signal inter-
pretations delivered by various observers. Analytically, it
justifies the interest for the affine group:

t—at+b (1)

in the development of signal theory [1][2].

Working with the affine group (1) leads mathemati-
cally to introduce its linear representations on signals by
transformations:

S(t) — §'(t) = a"S(a7 (¢ - b)) 2)

where the parameter 7 can be any real number. A dimen-
sional interpretation of this parameter does exist but it de-
pends on the characteristics of the measurement system we
are using. As a matter of fact, every communication signal
corresponds to the evolution of a physical quantity whose
numerical values are functions of the chosen units of mea-
surement. These units are generally interrelated, since an
agreement between observers can always be introduced in
order to ensure given values to some physical quantities
like the velocity of light, the Planck constant, etc... Such
a standardization procedure for the reference systems does
not fix the relative spatial orientation of the axis or the
relative position of the origin but it establishes connexions
between the various scales. Hence, for example, the trans-

formations of the fundamental units of time, length and
mass can be taken of the form:

T — aT
L—al (3)
M—a'M

where a is a positive dilational factor expressing the residual
freedom of the observers. In this change of units any me-
chanical quantity is itself multiplied by some definite power
of a and this leads to a direct evaluation of the parameter
occurring in (2).

The strict mathematical discussion of wavelet analysis
(1]{3] does not depend on the choice of a particular repre-
sentation of the affine group and the classical choice r = —%
in equation (2) is mainly justified by the familiar form of
the invariant scalar product it introduces. However, when
practical applications are planned, the choice of r has to
be discussed. The object of the following developments is
to show that such a discussion cannot be avoided without
giving up the physical pertinence of the results.

Interpretation of wavelet analysis refers usually to an
idea of localization which is neither trivial nor subjective
in physics. In fact the essential of the notion is completely
determined with the adoption of a measurement technique
coherently defined for all observers. An illustration of this
point is given below by deriving expressions for pure time-
localized signals. The basic principle of observers equiv-
alence implies that any signal Sy, localized at ¢y must be
transformed into another localized signal Sq¢o+5 in the clock
change (1). By virtue of (2) this implies that S, verifies
the functional equation:

Sato'Hl(t) = arstn(a_l(t - b)) (4)

This equation is easily solved with the help of a Fourier
transform defined by:

Z(f) = /R e 2t S(¢) dt (5)

and its solutions in the class of real signals of time are found
to be of the form:

Zto(f) = Ke_z‘"ftnlfl—r—l (6)
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where K is a real constant. These functions are dependent
on the parameter r of the chosen representation, that is to
say on the dimension of the physical localized signals they
are representing. It can be noted that the “mathematical”
localized expression:

Si(t) = K68(t — to) (7

is only obtained for the particular case r = —1.

The above considerations open the way to a natural
localization procedure founded on a careful comparison of
the signal to study with localized signals of the same phys-
ical dimension. Practically they justify the introduction of
the “dimensionalized” wavelet transform which is a mere
rewriting of the classical one where the parameter r in the
generic relation (2) is left free. For consistency, the invari-
ant scalar product:

(S1,52) = / T nhznr a (8)

has to be used in place of the classical one. This formula-
tion does not particularize any observer and, whatever r,
leads to a dimensionless wavelet coefficient. The isometry
property of the transform ensures that the square modulus
of this coefficient can be interpreted as a probability density
on the time-frequency plane. This density presents itself as
a particular case of g-dimensionalized distributions which
transform according to:

R(t, f) — a*R(a™'(t = b),af) (9)

in the clock change (1). Localized distributions Ly,,g, on
the time-frequency plane are naturally introduced through
the correspondence:

Lto Jo La1o+b,f0/’1

expressing the equivalence of the observers connected by
(1). Their analytic expression results from (9) and reads:

Leo,5o = K f18(t — 10)é(f — fo) (10)

where K is any constant. Positive repartitions of such
states give images characterized by a dimension which de-
pends on the parameter ¢ in (10). In the dimensionalized
wavelet imaging, the repartition is taken, up to a constant,
equal to the square modulus of the wavelet coefficient. This
procedure ensures that the ponderation is represented by a
zero-dimensional density and that none of the observers is
of special importance.

The above overview on wavelet imaging has stressed
the importance of a dimensional study of the problem to
solve previous to any application of the method. In this
operation, each situation must be the object of a special
attention and the most effective illustration of the technique
is given by the development of an example. In the following
the method is applied to the description of the reflectivity of
radar (or sonar) targets whose backscattering coefficient is
known. The general problem is presented in section II and
the relevant dimensionalized wavelet transform is developed
in section III. Dimensional arguments and resulting analytic
expressions for the reflectivity are given in section IV.

2-RADAR IMAGING
AND SIMILARITY GROUP.

The state of the art for radar or sonar imaging can be
found in books and review papers [4][5][6]. In this section
we give only a sketch of the technique in order to get a
frame for the development of the wavelet approach of the
problem.

Laboratory studies of radar targets make generally use
of a monostatic coherent radar operating as shown on Fig.1.
In a simple typical application the target rotates around a
fixed axis perpendicular to the radar line of sight and polar-
ization dependence is disregarded. In a more sophisticated
experiment a positioning device can be used . The acquired
data are values of the backscattering coefficient for differ-
ent orientations of the target and different frequencies of
irradiation. They realize the sampling of a complex func-
tion H(f,§) defined on a three-dimensional space where
frequency f and orientation {2 are spherical coordinates of
a point. This complex function is sometimes called radar
hologram. For each values of f and {2, the square modu-
lus of H represents the radar cross section of the target.
In usual three-dimensional scattering this quantity has the
dimension of a surface and the function H itself has the
dimension of a length. For convenience the arguments of
the function H will be represented in the following by the
vector k of modulus 2f/c and direction .

The idea of radar image is associated with the optical
notion of reflectivity. It corresponds to a description of the
electromagnetic target by a collection of bright points, each
reflecting for a given frequency and for a given direction of
illumination. The basic element of this model can thus be
characterized by a point in a six-dimensional space (x,k)
where x holds for the position of the point and k for its
reflecting properties. As for the whole target, the direction
of k corresponds to the working direction of the elementary
reflector and | k | is related to its working frequency by:

f=51K]| (11)

N o

For a given target, the expression of the function H(k) de-
pends on the reference system which is used. The study of
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the transform of this function by change of observer consti-
tutes the dimensional diagnosis of the problem.

The choice of a reference system concerns at first the
origin of coordinates, the orientation of the axis and the
scales of length and time. For two different choices, the
corresponding coordinates of the bright points are related
by a transformation which will be noted:

x — x' =aRx + 8x (12)

where R is a spatial rotation matrix, a is a positive dilation
factor and éx a translation vector.

The only physical parameter involved in the experi-
ment is the velocity of light. All observers are supposed
to agree on its value and this implies that their respec-
tive scales of length and time are always in the same ratio.
This observation leads to complement the relation (12) by
the transformation:

k—k'=a"'Rk (13)

since a frequency must transform as the inverse of a time.

In the actual experiment, each observer has also to per-
form a radar calibration by defining a center of phases. For
practical reasons we will suppose that this point is system-
atically put at the origin of coordinates.

The above set of notations and conventions is sufficient
to study the modification of the backscattering function
in any change of observer. At first, we limit ourselves to
the change (12)-(13) subject to the constraint a = 1. The
corresponding transformations of H are directly obtained
by classical arguments and read:

H— H = e—ziwk.6xH(R—lk) (14)

It must be noted that the representation of the transla-
tions by an exponential factor in (14) results of the implicit
assumption that the target size is small as compared to
the radar-target distance. The change of length scale will
not only affect the coordinates (x,k) of the bright points
but also the unit used for the evaluation of H. With the
requirement that | H [* be a surface we are led to the trans-
formation law:

H(k) — H'(k) = ae %™ *H(aR™'k)  (15)

Relation (15) presents itself as a representation of the three-
dimensional similarity group. It connects observations of
the same target for various reference systems but it can also
be used to characterize the observations of similar targets
by a unique observer. This latter remark is at the starting
point of wavelets introduction in radar imaging.

3-APPEARANCE OF THE DIMENSIONALIZED
WAVELET TRANSFORM.

Let ¢(k) be the backscattering function of a reference
target which is:

- located in the neighborhood of x =0

- reflecting essentially in the direction of the unitary
vector n and at a frequency given by | k |=2f/c=1

- invariant by rotations of axis n.

By application of (15) to ¢(k) it is possible to gener-

ate a family of functions {@x,x,(k) | Xo € R? ko € R3}.
Each element of this family is indexed by vectors X, ko
which correspond respectively to vectors x =0, k = n by
formulas (12) and (13). The constructing process ensures
that the family is the same for all observers and depends
only on the reference target. In fact we have obtained a
set of coherent states for the similarity group which can be
used for wavelet analysis [7]. The particular features of the
present situation are that:

- the parameter space is the quotient of the similarity
group by the little group (due to the rotational symmetry
of the reference target)

- the choice of the exploited representation is founded
on dimensional arguments.

The use of the family {@x,k,} as a wavelet basis re-
quires the introduction of an invariant scalar product which
will be noted:

(H,,H2)3=/S dQ/owdkkHl(k,Q)H;(k,ﬂ) (16)

where k and § are the spherical coordinates for the vector k.
Adoption of (16) allows to introduce the wavelet coefficient
of a function H by the expression :

Cs(xo,ko) = (H’ ¢xu,ku)3 (17)

Straightforward computations show that this definition
leads to reconstruction and isometry formulas given by:

HK) = [Ks ()] / Ca (X0, ko) bxo o (K) dXo Ak (18)
and
1 H ls= Ko@) [ 1otk [ drodko (19)
where K characterizes the generating wavelet by:
Ko($) = [ 1600) Pk | dk (20)

Formulas (17)-(20) are relative to the wavelet transforma-
tion for functions of the three-dimensional variable k. How-
ever, in actual situations, we are not always working with
the whole backscattering coefficient H (k) but also with sec-
tions of it by an axis drawn from the origin or by a plane
containing the origin. In these two problems, the analysis
concerns functions of two or three variables whose trans-
formations by changes of observers are given by restricted
forms of (15).

The useful tool in the unidimensional case is a wavelet
transform founded on the basis:

1

i k
— —2irkz,
Beako = ¢ H () (1)

This basis must be exploited with the invariant scalar prod-
uct:

(ot = [ BREGER ()

and the explicit study of the transformation exhibits the
“admissibility” coefficient:
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K9 = | T sk P ak (23)

In the two-dimensional problem, the wavelet basis is of the
form: 1

; k
xorkeo (k) = —e 72RO G(-— 6 — ;) (24)
ko ko

where (k,6) and (kg,8) are polar coordinates of vectors
k and kg respectively. The relevant scalar product is the
usual one given by:

(Hl,Hz)=/Uhdofomdkkyl(k,e)fr;(k,e) (25)

The development of the wavelet transformation using (24)
introduces the admissibility coefficient:

59 = [ o) e (26)

4-RADAR IMAGING WITH WAVELETS

The intent in radar imaging is to obtain a map for the
spatial repartition of the target elements contributing to
the radar cross-section. In a practical approach this is done
by introducing a positive distribution Z(x, k) such that the
integral:

S(V) = /V I(x, k) dx 27)

represents the part of the scattering cross-section due to
the elements located in the volume V.

Images can as well be associated with backscattering

coefficients of one or two variables and, for differentiation,
we will use the notation Im(x,k) where m = 1,2, 3 refers
to the dimension of the problem.
- Each quantity Z,(x,k) must have the dimension
(L)>™™ in order that the Lh.s. of (27) be a surface. Its
wavelet expression will be taken under the form (m =
1,2,3):

In(x,k) = [Kn()] ™" | Con(x, k) P K |™72 (28)

where coefficients K, and Cp, = (H,#xx)m can be ob-
tained from formulas (16)-(26). The interest of definition
(28) comes from the general isometric relation (cf(19))
which allows to interpret expressions Cr,/Km as probabil-
ity densities on the space (x, k).

The integration of (28) on the whole x-space does not
give the real cross-section | H(k) |? but only a local mean of
this function. For example, the two-dimensional situation
leads to the formula:

S(ko) = / T (o, ko) do

= 1Kl [ LH( )P K5 6,6 - 60) * kakas

where notations have been defined for (24).
It can be verified that the mean cross-section trans-
forms as the cross-section itself in a change of observer.

This property was in fact ensured by the process of image
construction and does not depend on the dimension of the
problem.

The above construction is also technically interesting
since all computations it introduces can be performed di-
rectly from a polar coordinates sampling of the backscat-
tering function H. All the implementations are founded on
a radial geometric sampling of H and use the fast Mellin
transform [8].

5-CONCLUDING REMARKS

Dimensional considerations can really have a construc-
tive role in wavelet analysis. This point has been illustrated
with the application of the method to radar imaging of lab-
oratory targets.

From a general point of view, the technique leads to
the introduction of dependable concepts well inserted in
the physical context. The approach could be useful for the
study of descriptors beyond their classical domain of use.
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