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On the False Alarm Probability of the Normalized
Matched Filter for Off-Grid Targets: A Geometrical

Approach and Its Validity Conditions
Pierre Develter , Jonathan Bosse , Olivier Rabaste , Philippe Forster ,

and Jean-Philippe Ovarlez

Abstract—Off-grid targets are known to induce a mismatch
that dramatically impacts the detection probability of the popular
Normalized Matched Filter. To overcome this problem, the un-
known target parameter is usually estimated through a Maximum
Likelihood strategy, resulting in a GLRT (Generalized Likelihood
Ratio Test) detection scheme. While the test statistic for the
null hypothesis is well known in the on-grid case, the off-grid
scenario is more involved, and to the best of our knowledge, no
such theoretical result is available. This paper fills this gap by
proposing such an expression under circular compound Gaussian
noise with a known covariance matrix thanks to a geometrical
approach. It is exact, provided that the probability of false
alarm is low enough: we derive the conditions guaranteeing the
exactness of the relationship, and we show numerically that the
formula still yields a good approximation of the probability of
false alarm when this condition is not met.

Index Terms—Radar detection, off-grid, GLRT, PFA-
threshold relationship, theory of tubes.

I. INTRODUCTION

IN domains as varied as telecommunications, psychology, or
radar, detection theory is crucial to separate ambient noise

from signals of interest. In detection theory, received signals
are submitted to a hypothesis test to discriminate useful signals
from noise. Detection of signals with unknown deterministic
parameters is classically addressed with a Generalized Like-
lihood Ratio Test (GLRT) that replaces the unknown param-
eters with their Maximum Likelihood Estimators (MLE) in
the Likelihood Ratio detection test [1]. When analytical MLE
solutions are not available for signal parameters of interest,
most detection strategies assume for ease of implementation
that those parameters lie over a discrete set, called the grid,
usually chosen so that all tests on the grid are statistically
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independent when the tested signal consists of noise. However,
parameters have no reason to fall precisely on the grid since they
are often distributed over a continuous range. This induces an
off-grid mismatch between the tested and true target parameters
that deteriorates the detection performance of most state-of-the-
art tests made under the on-grid assumption. This paper will
consider this very general problem in the radar context where
unknown parameters can include Doppler shift, distance, or
direction without loss of generality. The Normalized Matched
Filter is the GLRT associated with the problem of detecting a
known signal of unknown amplitude in Gaussian ambient noise
of unknown power. It is also widely used for adaptive radar in
non-Gaussian contexts [2] for example when the noise is dis-
tributed according to a Complex Elliptically Symmetric (CES)
distribution [3]. The off-grid mismatch impact is particularly
dramatic for the Normalized Matched Filter (NMF) test [4].
In some cases, the detection probability may even vanish to
0 when the Signal-to-Noise Ratio (SNR) tends to infinity [4],
especially for low Probabilities of False Alarm (PFA), familiar
in radar context. To overcome this problem, the most apparent
solution consists of testing over the whole continuous support of
the signal parameter, not just the grid: this is the “true” GLRT,
that we call “off-grid GLRT” or “off-grid NMF” in this paper.
However, to the best of our knowledge, the analytical expression
of the null hypothesis statistic and the related PFA is unknown
in the literature for this GLRT.

The robustness of detectors to mismatched signals is a well-
explored topic in the detection literature. Several types of mis-
matches are addressed thanks to the derivation of suited GLRTs,
such as mismatch lying in a cone [5], [6], [7], [8], extended
to include the possibility of a mismatched interference sig-
nal in [9], quadratically constrained [10], among others [11].
Sometimes, another approach is privileged, and other signal
models are used to reduce interference from orthogonal signals
[12]. Those works deal with a general mismatch model, that
can be used to model several events, such as pointing errors,
imperfect array calibration, or multipath distortion. However,
those mismatch models and the associated detectors do not
suit the very specific non-linear off-grid mismatch well. For
example, to fit an entire cell in a cone, a lot of unwanted signals
must be included in the acceptance zone of the detector, thus
decreasing its selectivity. Furthermore, the low PFA used in
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Radar context makes things even harder: the cone approach is
limited to high PFA to deal with off-grid targets, which is not
always realistic in practice [13].

While the off-grid issue has been studied extensively in in-
verse reconstruction problems [14], [15] (in those contexts, the
decrease in performance due to off-grid targets is particularly
dramatic) and in sparse estimation problems (especially in off-
grid Direction Of Arrival estimation in Radar contexts, see for
example [16], [17]), off-grid target detection has received less
interest as far as we are aware of.

In the Bayesian context, when all target parameters are dis-
tributed according to a uniform probability distribution, it can
be shown that the best detector in the sense of the average
probability of detection is the Average Likelihood Ratio Test
(ALRT) derived in [18] assuming the signal amplitude as known
and in [19] assuming a random Gaussian signal amplitude.

This paper focuses on the deterministic case where the target
amplitude and unknown parameters are deterministic. In this
context, the off-grid GLRT can be costly to implement with
satisfying precision and is hard to analyze. For this reason,
sometimes the problem is simplified: for example, the steer-
ing vector can be made linear concerning the mismatch with
a first-order Taylor approximation, making it possible to de-
rive analytical forms for the simplified GLRT, offering good
detection performance, although the PFA-threshold relation-
ship is unknown [20], [21]. Another approach to simplify the
problem consists of modeling the cell as a linear subspace
with Discrete Spheroidal Sequences subspace [4] or the Taylor
expansion of the signal [22]: this allows for the use of sub-
space detectors [23]. In this case, theoretical analysis of the
test is easy to perform, but detection performance is consider-
ably lower than the off-grid GLRT, especially under non-white
noise contexts [24].

This paper studies the “true” off-grid GLRT without approx-
imation, as was done in [25] in the adaptive case. Our aim is
not the implementation but rather the analysis of the off-grid
GLRT, which is often delicate. In particular, the theoretical PFA

is difficult to investigate since the test quantity is the maximum
of non-independent random variables. Yet, it is essential as it
is needed to implement the detector.

The search for the probability of a stochastic process or
random field exceeding a threshold has been the subject of
numerous works in the applied statistics literature (see, for
example, [26], [27], [28]). However, those works mainly focus
on real processes and random fields, and to our knowledge, few
articles [29] link them with the detectors used by the signal
processing community.

Based on earlier results on the volume of tubes on sphere
[30], [31], we showed in [32] how to obtain an upper bound
for the PFA-threshold relationship. In this paper, we dive once
again into tube theory to show how it also enables an original
and simple derivation of the on-grid PFA-threshold relation-
ship. Moreover, starting from studies on overlap [33], [34] we
derive new conditions of equality of the proposed upper bound.
We show that above a certain limit threshold, equality is met.
Closed-form expressions for this limit threshold are derived
under white noise. As we will show, the proposed formula is

proved to be exact under PFAs that are not too high, which is
the standard regime of application of the NMF.

Section II presents the signal model, the off-grid problem,
and the true GLRT formulation. Section III introduces the tube
formalism and gives an original derivation of thePFA-threshold
relationship using a formula related to the surface of tubes
embedded on hyper-spheres. Section IV showcases the domain
of validity of the relationship. It features the derivation of lo-
cal overlap criteria for tubes around general multi-dimensional
manifolds embedded on hyper-spheres. In Section V we check
the validity of our derivations for our application by comparing
the theoretical thresholds to Monte-Carlo simulations. The re-
lationship between the correlation of the noise and the size of
the domain of validity is also examined.

Notations: Matrices are in bold and capital, vectors in bold.
For any matrix A or vector, AT is the transpose of A and AH

is the Hermitian transpose of A. I is the N ×N identity matrix
and CN (μ,Γ) is the circular complex Normal distribution of
mean μ and covariance matrix Γ. S

n−1 is the unit sphere
in R

n. The real and imaginary part operators of a complex
number are denoted by Re(.) and Im(.). The operator u is
the angle of a complex number u. � denotes the Hadamard
product. Γ(.) is the gamma function. ‖.‖ denotes the classical l2
norm for vectors.

II. PROBLEM FORMULATION

A. Signal Model

A very common detection problem in radar as well as in
other domains consists of detecting a complex signal d ∈ C

N

corrupted by an additive noise n (clutter, thermal noise, etc.).
This problem can be stated as the following binary hypoth-
esis test, where the goal consists of deciding between two
hypotheses H0 and H1:{

H0 : r= n, (noise only)
H1 : r= αd(θ) + n, (signal plus noise)

where r is the complex vector of size N of the sampled received
signal, α is an unknown complex target amplitude and d(θ)
stands for a generally known steering vector characterized by
unknown target parameters θ (time-delay, Doppler or angle in
radar). In the sequel, we will assume that n is a zero-mean
complex circular Gaussian noise vector with unknown variance
σ2 i.e.n∼ CN (0, σ2 Γ) and known shape matrixΓ (covariance
matrix up to a scale factor). This context is known as a partially
homogeneous Gaussian environment. All the results in this
paper still apply to any other spherically invariant distribution.
In this work, we will assume θ to be a deterministic unknown
scalar. Although all general results of this paper apply to any
signal model d(θ) (including chirp signals, in which case the
unknown parameter θ models the unknown range of the target),
to derive closed-form solutions, we choose the following com-
mon signal model:

d(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
. (1)

This model of steering vector is very common in spec-
tral analysis and often encountered in radar Range-Doppler
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detection schemes (in which case θ represents the Doppler
shift of the target) where the problem consists in estimating
a complex sinusoid embedded in noise after range Matched
Filter processing.

B. Normalized Matched Filter (NMF)

In classical detection theory, for unknown parameters
{λi}i∈[0,1] depending on each hypothesis {Hi}i∈[0,1] (either
parameters of interest, and/or nuisance parameters), the usual
procedure relies on the Generalized Likelihood Ratio (GLR)
statistic, namely the ratio Λ(r) between the Probability Density
Function (PDF) fH1

(.) of the data under H1 and the PDF fH0
(.)

under H0 where the unknown parameters are replaced by their
ML estimate:

Λ(r) =
maxλ1

fH1
(r)

maxλ0
fH0

(r)

H1

≷
H0

w2,

where w2 is the detection threshold set according to a desired
PFA, such that:

PFA =

∫
DA

fH0
(r)dr, (2)

where DA ⊂ R
N is the domain of acceptance of the test,

defined as DA = {r ∈ R
N : Λ(r)>w2}.

When λ1 = {α, σ} and λ0 = {σ} with θ known, the corre-
sponding GLRT is known as the NMF (Normalized Matched
Filter) [1]: ∣∣d(θ)HΓ−1 r

∣∣2(
d(θ)HΓ−1 d(θ)

) (
rHΓ−1 r

) H1

≷
H0

w2. (3)

This test is also widely used for adaptive radar in non-Gaussian
contexts [2], [35] for example, when the noise is distributed ac-
cording to a Complex Elliptically Symmetric (CES) distribution
[3]. Its statistic under H0, in this case, is the same as in the
Gaussian case.

Equivalently, Eq. (3) can be rewritten with normalized
whitened vectors:

∣∣s(θ)H u
∣∣2 H1

≷
H0

w2, (4)

where s(θ) =
Γ−1/2d(θ)∥∥∥Γ−1/2d(θ)

∥∥∥ and u=
Γ−1/2r∥∥∥Γ−1/2r

∥∥∥ .

The corresponding PFA-threshold relationship is well known
and is found using statistical tools in [1]:

PFA =
(
1− w2

)N−1
. (5)

Note that the NMF expression (4) has a simple geometric in-
terpretation. It is indeed the squared cosine of the angle between
s (θ) and u. The threshold characterizes the squared cosine of
the angle cos−1 w. A target is detected when the vector angle
is below this limit angle.

C. Detecting on a Grid and Related Issues

The test (4) was derived with the parameter θ supposed
to be known. In practice, this is not the case, and this is

Fig. 1. Mean PD of the standard on-grid NMF (4) (red), its oracle
counterpart that knows the positions of the targets (yellow) and the off-grid
GLRT (7) (blue) as a function of the SNR in the presence of off-grid targets
under white noise. PFA = 10−6 and N = 10.

why tests are made for several fixed parameter values. The
collection of parameters θ where detection tests are run is called

the grid. For our model, the usual grid is generally G =
{ k

N
:

k ∈ [0, 1, . . . , N − 1]
}

. Fourier resolution cells for this grid are
then the following

Dk =

[
k

N
− 0.5

N
,
k

N
+

0.5

N

]
, (6)

where k ∈ [0, 1, . . . , N − 1].
When the point θ where the NMF is tested is different from

the target’s true parameter θ0, the target is said to be off-grid.
This induces a mismatch δθ = θ − θ0 between the true target
steering vector s(θ0) and the steering vector s(θ) under test.
Unfortunately, it was shown in [36] that the NMF detector is
very sensitive to steering vector mismatch, potentially leading
to a dramatic deterioration of the detection performance: the
detection probability can even tend to 0 when the SNR tends
to infinity. This phenomenon occurs [4] for PFA as high as
10−3 in the chosen resolution cell of width 1/N . Fig. 1 rep-
resents the average probability of detection of the NMF as a
function of the SNR for δθ uniformly distributed in D0: the
asymptotic probability is well below 1 for a threshold corre-
sponding to a PFA of 10−6. Note that this simulation was done
under white noise. The NMF behavior can be even worse when
Γ �= I. In this case, the detection probability depends on the
considered cell Dk.

D. The Off-Grid GLRT

Instead of assuming that the target parameter lies on a grid,
it is more realistic to assume that it is unknown. This leads to
the general off-grid GLRT procedure, which gives in our case:

GLRT (u,D) = max
θ∈D

∣∣s(θ)H u
∣∣2 H1

≷
H0

w2, (7)

where D is the search domain relative to the unknown parameter
θ. Usually, for the steering vector defined in Eq. (1),D is defined
as one of the Fourier resolution cells Dk.
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This detector corrects the off-grid issue of test (4) as can be
seen in Fig. 1: its probability of detection is close to that of the
oracle detector that knows the positions of the targets.

There are several ways to approximate the test quantity (7).
The most natural solution consists of refining the search grid.
However, the computational cost may become high for a precise
estimation of the test quantity, as the number of tests to be run to
approximate (7) equals the oversampling factor. A more clever
approach uses joint detection and estimation tools, which jointly
merge the detection and estimation steps in the signal process-
ing chain. The unknown parameter is estimated, not necessarily
in the MLE sense, then introduced in the test quantity (3).
Examples of estimation techniques that may be used to estimate
the target parameter in this procedure include monopulse-based
techniques [24] or the interpolation of the Fourier Transform
lobe [37]. This empirical approach enables a precise approx-
imation of the target parameter at a low computational cost,
similar to oversampling by a factor of two, even under colored
noise [24]. Finally, maximizing for the unknown parameter was
shown to be a semi-definite positive convex problem in [25] so
that interior point methods can achieve the required precision
in polynomial time in N .

This paper is a theoretical analysis of the off-grid NMF,
where we assume that the test quantity (7) is computed exactly.
More specifically, we aim to derive its PFA-threshold relation-
ship. Indeed, the threshold w2 to be used in (7) is different from
the one in (3), because while the PDF fH0

of the noise does
not change in (2) whether we consider (7) or (3), the domain of
acceptance DA does. The difficulty consists here of evaluating
the statistic of the maximum of a continuum of non-independent
random variables.

III. AN ANALYTICAL PFA-THRESHOLD RELATIONSHIP

WITH A GEOMETRICAL INTERPRETATION

Through geometrical considerations, Hotelling [30] derived a
methodology to study statistical tests over the real sphere thanks
to the computation of the surfaces of tubes around a curve. In-
deed, for a spherically invariant noise on the sphere, evaluating
the PFA of a test reduces to computing the surface of the accep-
tance zones, which are tubes. Section III-A presents his formula
for the surface of tubes. It enables us to provide an alternative
derivation of the well-known PFA-threshold relationship (5) for
the NMF in Section III-C thanks to a simple rewriting of the
NMF test quantity in Section III-B. Unfortunately, as explained
in Section III-D, Hotelling’s formula cannot be directly applied
to the case of the off-grid NMF expressed in (7). Indeed, as we
will show, finding the PFA in the radar case with one unknown
parameter requires the computation of the volume of a tube
around a manifold of dimension M = 2: this is addressed in
Section III-D thanks to [31].

A. Hotelling’s Original Geometrical Approach

This section presents Hotelling’s original theorem for com-
puting the surface of tubes on a sphere. Consider a curve γ(ξ)
on the sphere Sn−1, with ξ ∈ [0, b]. A tube T of geodesic radius

Fig. 2. Example of a tube T on S2 around a curve γ(ξ). Since the curve
is non-closed, semi-spherical caps (in green) appear at the ends of T .

φ is defined as the set of points with a geodesic distance to the
curve inferior to φ. Formally:

T =
{
u ∈ S

n−1 : ∃ ξ ∈ [0, b],uTγ(ξ)> cos(φ)
}
.

T can be seen as the union of the spherical caps SCξ ={
u ∈ S

n−1,uTγ(ξ)> cos(φ)
}

. Fig. 2 provides a graphical ex-
ample of a tube. In [30], Hotelling gives a formula for comput-
ing the surface of T for a closed curve (γ(0) = γ(b)).

Theorem III.1: [30] The surface enclosed by a tube of
geodesic radius φ around a closed curve on the real unit sphere
S
n−1 is the product of the length of the axial curve by the

volume of the n− 2 ball of radius sinφ:

π(n−2)/2

Γ
(n
2

) sinn−2(φ) . (8)

When dealing with a non-closed curve, one has to add the
surface of the two end semi-spherical caps to Hotelling’s for-
mula to characterize the surface of T .

Note that, in general, for Hotelling’s formula to hold, each
point in the tube must belong to a unique cross-section. Follow-
ing Hotelling, this restriction will be called the non-overlap con-
dition. Overlap phenomenons can happen when a tube draws
back into itself (non-local overlap) and its curvature becomes
too high (local overlap). Non-overlap is locally guaranteed
when φ is low enough. More specifically, for a curve of constant
radius of curvature ρ, Hotelling shows in [30] that the condition
for having no local overlap is the following:

sinφ≤ ρ . (9)

In case of overlap, the surface given by Hotelling’s theorem
becomes an upper bound.

A study of overlap phenomenon is given in Section IV.

B. The Complex Manifold

This section aims to rewrite the NMF test quantity (4) us-
ing real vectors to apply Hotelling’s formula (8). Indeed, for
any α ∈ [0, 2π], let us remark that Re

(
s (θ)

H
u exp (−iα)

)
≤∣∣∣s (θ)H u

∣∣∣, those two quantities being equal for α= s (θ)
H
u.
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Fig. 3. Ton-grid (in violet) embedded on the unit sphere S2 in R3. SCα is
drawn in blue [38].

We then have, decomposing s (θ) and u into real and ima-
ginary parts:

Re
(
s (θ)

H
ue−iα

)
=
(
γ1(θ)

Tu
)
cosα+

(
γ2(θ)

Tu
)
sinα ,

where γ1(θ) =

[
Re(s (θ))
Im(s (θ))

]
, γ2(θ) =

[
−Im(s (θ))
Re(s (θ))

]
and u=[

Re(u)
Im(u)

]
is a 2N -real valued noise vector drawn uniformly on

S
2N−1 under H0. Denoting

γ(θ, α) = γ1 (θ) cosα+ γ2 (θ) sinα , (10)

we have, therefore:

max
α∈[0,2π]

γ(θ, α)Tu=
∣∣∣s (θ)H u

∣∣∣ . (11)

We see that the complex case leads to consider a 2D real
manifold γ(θ, α). The GLRT (7) reads:

max
θ,α

γ(θ, α)Tu
H1

≷
H0

w . (12)

C. An Original Alternative Derivation of the On-Grid PFA-
Threshold Relationship

In this section, we provide a simple alternative derivation to
[1] for the on-grid PFA of (4). Indeed, finding the PFA reduces
to a simple geometrical problem, which enables us to apply
Hotelling’s theorem. Readers interested in the derivation of the
PFA for the GLRT (7) can skip to Section III-D. In this section,
θ is considered fixed in D: we deal with the on-grid case.

A false alarm occurs when u ∈ Ton-grid, where

Ton-grid =

{
u ∈ S

2N−1 : max
α∈[0,2π]

γ(θ, α)Tu>w

}
.

The tube Ton-grid we deal with here is represented in Fig. 3 in
R

3. Note that Ton-grid is drawn around a closed curve: indeed
γ(θ, 0) = γ(θ, 2π).

Since u has been whitened, u is uniformly distributed over
the unit 2N -sphere under the null hypothesis, the PFA is the
ratio of the surface of Ton-grid and the surface of the unit sphere.

We can apply Theorem III.1 to the tube Ton-grid previously
defined around the curve γ(θ, α)with fixed θ and parameterized

by α to find the PFA of the NMF (5). The length of the axial
curve is equal to 2π. In this case, the tube is closed, and one
does not need to add end spherical caps to Hotelling’s formula.
Furthermore, we prove that Ton-grid does not overlap in Section A
of the appendix so that the surface given by Hotelling’s formula
is thus exact in this case. Applying Theorem III.1 with n= 2N ,
φ= cos−1 w gives:

Surface(Ton-grid) = 2π
πN−1

Γ(N)
sin2(N−1)(φ),

=
2πN

Γ(N)

(
1− w2

)N−1
. (13)

Dividing (13) by the surface
2πN

Γ(N)
of S

2N−1 leads to the

expected result (5). This geometrical approach provides an al-
ternative to the traditional one based on statistical tools [1].

D. Extending Hotelling’s Approach to the GLRT

Unfortunately, Hotelling’s result is not immediately appli-
cable to the considered GLRT (12): since a maximization on
the parameter θ is introduced, the surface of interest is spread
around a 2D manifold as will be seen now.

The acceptance region in this case is a new tube Toff-grid

around the two-dimensional manifold γ(θ, α):

Toff-grid =

{
u ∈ S

2N−1 : max
θ∈D,α

γ(θ, α)Tu>w

}
.

Note that in this case, Toff-grid follows a manifold that is often
not closed since, writing D = [θ1, θ2], γ(θ1, α) �= γ(θ2, α) in
general. Unlike previously, when computing the surface of the
tube, a term accounting for its boundaries will appear.

Hotelling’s result does not cover this multi-dimensional man-
ifold case as it gives the surface of a tube around a curve.
However, in [31] and [39], this result is extended to a special
case of two-dimensional manifolds embedded on S

n−1 which
is of interest to us:

Theorem III.2: [31] For i ∈ [1, 2], let γi : [θ1, θ2]→ S
n−1

be regular curves. Assume γ1(θ)
Tγ2(θ) = 0 for all θ. Let

Z(θ) =
[(
γ1(θ)

Tu
)2

+
(
γ2(θ)

Tu
)2]1/2

where u is uniformly

distributed on S
n−1. Then for 0<w < 1, we have, under no

overlap regime, i.e. low PFA regimes (see Section IV for a
detailed study):

P

(
max

θ1≤θ≤θ2
Z (θ)>w

)
= (1− w2)(n−2)/2

+
Γ
(
n
2

)
w (1− w2)(n−3)/2

2π3/2 Γ
(
n−1
2

)

×
∫ θ2

θ1

∫ 2π

0

[
‖γ̇1(θ) cosΩ + γ̇2(θ) sinΩ‖

2

−
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ , (14)

where γ̇i(θ) is the derivative of γi(θ) with respect to θ. When
there is overlap, i.e., high PFA regimes, the right-hand side of
(14) becomes an upper bound.
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It turns out that we can reformulate our problem to fulfill the
assumptions of the above theorem with n= 2N . Indeed, using
(10) and (11), we can check that:∣∣∣s (θ)H u

∣∣∣2 = ∣∣γ1(θ)
Tu
∣∣2 + ∣∣γ2(θ)

Tu
∣∣2,

so that Theorem III.2 gives us the desired PFA (when equality
holds in (14)). Follows our result:

Corollary III.2.1: In the absence of overlap (low PFA

regimes), the PFA for the GLRT (7) for a search interval
D = [θ1, θ2] with the steering vector d (θ) defined in (1) is
given by:

PFA = (1− w2)N−1

+
Γ(N)w (1− w2)N− 3

2

π1/2Γ
(
N − 1

2

)
∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ.
(15)

where P⊥
γ2(θ)

= I− γ2(θ)γ2(θ)
T is the orthogonal projec-

tor on γ2(θ). Under white noise (Γ= σ2 I), this result
simplifies to:

PFA = (1− w2)N−1

+

√
π

3

Γ(N)w (1− w2)N− 3
2

Γ
(
N − 1

2

) (
N2 − 1

) 1
2 (θ2 − θ1).

(16)

When D = [0, 1], the first term has to be removed from the
equations.

The integral in (15) can be easily evaluated numerically.
Proof: First, notice that the derivatives γ̇1(θ) and γ̇2(θ)

are orthogonal, and that ‖γ̇1(θ)‖= ‖γ̇2(θ)‖. Thus, for all Ω ∈
[0, 2π], we have that

‖γ̇1(θ) cosΩ + γ̇2(θ) sinΩ‖
2
= ‖γ̇1(θ)‖

2
,

which does not depend on Ω. The double integral simplifies:∫ θ2

θ1

∫ 2π

0

[
‖γ̇1(θ) cosΩ + γ̇2(θ) sinΩ‖

2

−
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ,

= 2π

∫ θ1

θ2

[
‖γ̇1(θ)‖

2 −
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dθ,

= 2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ, (17)

In the case of white noise, this integral can be computed ana-
lytically. Let x be the following vector:

x= 2π [0, 1, . . . , N − 1]
T
,

so that

γ̇1(θ) =

[
x
x

]
� γ2(θ) , (18)

γ̇2(θ) =−
[
x
x

]
� γ1(θ) . (19)

Then:

‖γ̇1(θ)‖= ‖γ̇2(θ)‖ = 2π

√
(N − 1)(2N − 1)

6
. (20)

and

γ̇1(θ)
T γ2(θ) =

([
x
x

]
� γ2(θ)

)T

γ2(θ),

=
2π

N

N−1∑
k=0

k = π (N − 1). (21)

Then, injecting (20) and (21) into (17):

2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ = 2(θ2 − θ1)π
2

√
(N2 − 1)

3
.

(22)

Replacing the double integral in (14) with (22) gives the ex-
pected result. �

Interestingly, note that the first term in (16) represents the
surface of the two semi-spherical caps at the extremities of the
tube. As such, it equals the PFA of the NMF expressed in (5).
The second term shows the influence of the manifold induced by
the off-grid nature of the problem. It is analogous to the one-
dimensional case of Theorem III.1, divided by the surface of
S
2N−1. Here, θ2 − θ1 plays the role of the manifold length, and

the rest of the rightmost term is the surface of the cross-section
divided by the area of S

2N−1. When D = [0, 1], the ends of
the tube meet, and the end semi-spherical caps vanish into the
main component: this can be visualized as if going from Fig. 2
to Fig. 3. This explains why the first term should be removed
when D = [0, 1]: it is already included in the second term.

One point of interest that can be seen looking at formula (15)
is that the off-grid NMF (7) is not CFAR with respect neither
to Γ or D. This is explained by the fact that the length of the
whitened manifold s(θ) varies with both Γ and D. As a result,
the surface of the tube around this manifold also varies, and
thus so does the PFA. To the best of our knowledge, this result
is not discussed in the current literature.

The relationships in Corollary III.2.1 are upper bounds in the
presence of overlap. In this case, they still hold interest in the
radar context where controlling the PFA is fundamental. The
following section investigates the conditions under which no
overlap happens.

IV. ON THE APPEARANCE OF OVERLAP

The goal of this section is to determine for which thresholds
formula (14) (formula (16) in the case of white noise) holds
equality. This requires us to investigate the conditions under
which overlap occurs. We will start by exhibiting general results
from [33], [34] and some original results on shift-invariant
manifolds before delving into our specific problem.

Let us consider an M -dimensional manifold M= {γ(ξ),
ξ = (ξ1, . . . , ξM ) ∈ D} defined on the search domain D over
S
n−1 and let us consider the tube T over S

n−1 around M
consisting of the points u satisfying uTγ(ξ)>w for some ξ
in D. M can be seen, loosely speaking, as the axis of T . The
cross-section CSξ defined in [33] at a point ξ belonging to
M is the set of points of T orthogonal to the derivatives of
γ in ξ. Formally:

CSξ =

{
u ∈ T ,uT ∂γ

∂ξT
= 0,uTγ(ξ)>w

}
. (23)
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Fig. 4. Illustration of all the phenomena leading to an overestimation of the
PFA when using (16).

Excluding the edge effects defined later in this section, the
tube defined as the union of cross-sections overlaps if and only
if a point u of T belongs to more than one cross-section: in
this case, Hotelling’s geometrical approach and its extensions
lead to an overestimation of the Probability of False Alarm.
Otherwise, the equality holds in (14). Two types of overlap
are defined in [30]: local overlap, which derives from local
differential properties of the manifold generating the tube, and
non-local overlap, which depends on the overall shape of the
tube. Global overlap encompasses both types of overlap. It
is linked to a limit overlap threshold wlim and there is no
overlap if:

w ≥ wlim . (24)

The limit threshold can be equivalently seen as an angle φlim

such that

cosφlim = wlim ,

and there is no overlap if

φ= cos−1 w ≤ φlim .

In the sequel, the conditions are expressed in terms of φlim.
In addition to those phenomena, edge effects also have to

be considered. They can appear when dealing with non-closed
manifold and cause the same problems as overlap i.e. an over-
estimation of the PFA. In the 1D case illustrated in Fig. 2,
edge effects would occur when the green semi-spherical caps
at the end overlap. A manifold is said to be closed along di-
mension k if its k-th variable ξk belongs to an interval [ξk1

, ξk2
]

such that γ(ξ1, . . . , ξk1
, . . . , ξM ) = γ(ξ1, . . . , ξk2

, . . . , ξM ) for
all ξi, i �= k. A manifold is said to be closed if it is closed along
all its dimensions.

Fig. 4 summarizes all the phenomena that can arise.

A. The General Case

In this section, we give the conditions under which no over-
lap happens under general conditions for any M -dimensional
manifold γ(ξ1, . . . , ξM ) embedded in S

n−1.
In [33], a criterion for characterizing the overlap of a tube

embedded on a sphere around a curve is introduced that is a

direct consequence of the fact that the union of the cross-section
needs to be disjoint. It turns out that the arguments used by
the authors can be generalized to find overlap criteria for tubes
around any M -dimensional manifolds, as suggested in [34].

Theorem IV.1: [33], [34] Let γ(ξ) be a C2M -dimensional
manifold parameterized by ξ = (ξ1, . . . , ξM ) ∈ D. Let φlim be
the limit angle for which no overlap occurs, related to wlim (24)
by cos(φlim) = wlim. LetPξ′ be the projection onto the subspace

spanned by γ(ξ′) and its derivatives
∂γ

∂ξ′
. φlim is given by:

cot2 φlim = sup
ξ,ξ′∈D2

1− γ(ξ)TPξ′γ(ξ)(
1− γ(ξ)Tγ(ξ′)

)2 ,
� sup

ξ,ξ′∈D2

h(ξ, ξ′). (25)

The criterion (25) encompasses both local and non-local
overlap:

φlim =min{φlocal, φnon-local} , (26)

where φlocal and φnon-local are the limit angles such that local
and non-local overlaps occur. Local overlap occurs when ξ′

tends to ξ, and non-local overlap arises when the sup of h in
(25) is attained for ξ �= ξ′. Note that (25) does not consider
edge effects.

It can be simplified in the case of a shift-invariant manifold:
Definition IV.1: A real manifold γ(ξ) is said to be shift-

invariant when, for any ξ, ξ′, the scalar product γ(ξ)Tγ(ξ′)
depends only on ξ − ξ′:

γ(ξ)Tγ(ξ′) = f(ξ − ξ′),

where f is an even function.
Then, similarly to the case of a single parameter, we have the

following property:
Proposition IV.1: For a shift-invariant manifold γ(ξ), h as

defined in (25) is a function of ξ − ξ′: h(ξ, ξ′) = g(ξ − ξ′).
Consequently,

cot2 φlim = sup
x∈E

g(x), (27)

where E is the image of D ×D by the function (ξ, ξ′)→
ξ − ξ′.

Proof: The proof is given in Appendix B. �
The implications of this result are detailed in the follow-

ing sections.
1) On Local Overlap: In this section, we discuss the occur-

rence of local overlap around a M -dimensional manifold. The
results of this section are particularized to our complex signal
model (1) in Section IV-B1.

Local overlap is linked to the curvature of the manifold.
To illustrate this, consider the case of a tube around a curve
in Euclidean space drawn in Fig. 5: there is local overlap
whenever the tube radius is greater than the radius of curvature
of the curve.

A local overlap criterion is developed in [34, Annex A.2].
Recall that it corresponds to the case where ξ′ tends to ξ.

We define the local overlap angle φlocal in ξ similarly in the
multi-dimensional case as:
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Fig. 5. Illustration of local overlap in 1D in the Euclidean case. Here, the
radius of the tube (in red) is greater than the radius of curvature. This causes
overlap: see, for example, that the point u belongs to both cross-sections CSξ

and CSξ′ .

Corollary IV.1.1: [34, Annex A.2] In the case of a tube around
an M -dimensional manifold γ, using the same notations as
before with β representing the directions of convergence from
ξ′ to ξ, the limit local overlap angle is given by:

cot2 φlocal = sup
ξ∈D

sup
β∈SM−1

lim
ε→0

h(ξ, ξ + εβ),

= sup
ξ∈D

sup
β∈SM−1

∥∥∥∑i,j βiβj (I−Pξ)
∂2γ

∂ξi ∂ξj

∥∥∥2(∑
i,j βiβj

∂γT

∂ξi

∂γ
∂ξj

)2 .

(28)

Readers can refer to [34, Annex A.2] for an interpretation in
terms of principal curvatures.

Proof: The proof is given in [34, Annex A.2]. �
The formula (28) can be simplified in the case of a shift-

invariant manifold: (27) shows that the maximization on ξ
can be dropped in (28). Indeed, h(ξ, ξ′) only depends on the
difference ξ − ξ′. The following developments allow us to go
further:

Corollary IV.1.2: Let γ(ξ) be a M -dimensional shift-
invariant manifold, and let G be its first fundamental form:

G=
∂γ

∂ξ

T ∂γ

∂ξ
. (29)

Then G does not depend on ξ. Besides, let

G=GT/2 G1/2 , (30)

and μ be a reparametrization of γ defined by

μ=G1/2 ξ , (31)

Then

∂γT

∂μi

∂γ

∂μj
= δij , (32)

and (28) reduces to:

cotφ2
local = sup

β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂μi∂μj

)∥∥∥∥∥∥
2

− 1 . (33)

Proof: The proof is given in the Appendix C. �

2) On Non-Local Overlap: Non-local overlap arises when
the tube draws back into itself, as shown in blue in Fig. 4 for a
tube spanned by a curve. In [33], it is shown in the case M = 1
that the limit angle around a closed manifold γ(ξ) linked to
this type of overlap can be characterized entirely by looking
at the pairs of points (ξ, ξ′) that minimize locally the distance∥∥γ(ξ)− γ(ξ′)

∥∥, with ξ �= ξ′. In such case, (25) reduces to an
intuitive geodesic distance criteria when ξ �= ξ′. In the general
case, M is arbitrary, and the following holds:

Proposition IV.2: Consider a tube around the M -dimensional
manifold γ lying on the sphere. The set of pairs

(
ξ, ξ′

)
that

characterizes non-local overlap is:

Ξ =

{(
ξ, ξ′

)
: ξ �= ξ′,

(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξk
= 0

and
(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξ′k
= 0, ∀k ∈ [1,M ]

}
. (34)

Then, if the manifold is closed:

φnon-local = min
(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
. (35)

For a non-closed manifold, a term accounting for the boundaries
must be taken into account:

φnon-local =min

{
min

(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
, E

}
, (36)

where

E = inf
(ξ,ξ′)∈B×D

cot−1
√
h (ξ, ξ′) . (37)

Proof: It is possible to adapt the proof of Proposition
4.2 of [33] for an M-dimensional manifold using the principal
curvature interpretation of (28) and by considering frontiers
around the local minima. The extension to the case of a non-
closed manifold is then straightforward. �

In the non-closed case, the limit angle φnon-local also en-
compasses instances of local overlap when ξ′ tends to ξ ∈ B.
Plugging it in (26) still yields the right exact limit angle φlim.

As noted in [33], this formulation is not necessarily more
straightforward to use than (25) since it can be more involved
to find the set of pairs Ξ than to compute (25). However, in Sec-
tion IV-B2, we show that, in our specific case, it enables us to
reduce the computational complexity of the search dramatically.

3) On Edge Effects: The formula (25) does not consider
edge effects that can arise when dealing with non-closed man-
ifolds. Indeed, noting B the boundaries of D, (25) is defined
for ξ ∈ D, ξ′ ∈ D \ B. Edge effects appear when a point u is
such that there exist two distinct points ξ1, ξ2 in B such that
uTγ(ξ1)>w and uTγ(ξ2)>w. It is illustrated in Fig. 4 in
the case M = 1. One has to check that the limit angle φlim is
big enough so that edge effects do not appear.

B. Application to the Complex Signal Model (1)

We apply here the general results of the previous section to
our case of interest where γ is given by (10), defined on D ×
[0, 2π]. This first result gives the limit global overlap threshold
for our application:
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Corollary IV.1.3: With γ defined as in (10), the limit angle
for no global overlap is:

cot2 φlim = sup
θ,α∈D×[0,2π]
θ′,α′∈D×[0,2π]

1− γ(θ, α)TPθ′,α′γ(θ, α)

(1− γ(θ, α)Tγ(θ′, α′))
2 , (38)

where Pθ′,α′ = I−P⊥
θ′,α′ with P⊥

θ′,α′ defined later in (41).
Proof: We simply inject (10) in (25). �

Under white noise, for one cell Dk, one can check numeri-
cally that the corresponding limit PFA is equal to:

PFAlim ≈ 10−2.52 , (39)

Fortunately, this PFA is well above the common PFA encoun-
tered in radar applications.

In the following sections, we discuss how to find the limit
angles φlocal and φnon-local. Indeed, the search domain in (38) is
4-dimensional, so the criterion can be heavy to evaluate. We can
accelerate the search of the global limit angle by first finding
the local and non-local overlap angle φlocal and φnon-local through
(28) and (35) then combining them using (26).

1) On Local Overlap: The following corollary gives φlocal

in our case:
Corollary IV.1.4: For our manifold γ defined in (10), we

have:

cot2 φlocal = sup
θ,α∈D×[0,2π]

sup
ϕ∈[0,2π]

J(θ, α, ϕ) , (40)

where

J(θ, α, ϕ) =

∥∥∥P⊥
θ,α

(
cos2 ϕ∂2γ

∂θ2 + sin 2ϕ ∂2γ
∂θ∂α + sin2 ϕ∂2γ

∂α2

)∥∥∥
cos2 ϕ

∥∥∥∂γ
∂θ

∥∥∥2+ sin 2ϕ∂γT

∂θ
∂γ
∂α + sin2 ϕ

∥∥∥∂γ
∂α

∥∥∥2
,

and

P⊥
θ,α = I−Mθ,α

(
MT

θ,αMθ,α

)−1
MT

θ,α , (41)

with Mθ,α =

[
γ(θ, α),

∂γ(θ, α)

∂θ
,
∂γ(θ, α)

∂α

]
. This expression

can be easily evaluated setting β = [cos(ϕ), sin(ϕ)] and then
maximizing on ϕ.

Proof: We simply inject (10) in (28), with M = 2. �
The derivatives of γ are found from a straightforward deriva-

tion using (18) and (19):

∂γ

∂θ
=
(
I− γ(θ, α)γ(θ, α)H

)

× (cosαγ2(θ)− sinαγ1(θ))�
[
x
x

]
,

∂γ

∂α
=− sinαγ1(θ) + cosαγ2(θ).

It is possible to find the analytical limit threshold for local
overlap under white noise.

Corollary IV.1.5: Under white noise with the signal model
as in (1), the limit local angle (40) is:

φlocal = tan−1

(√
5− C

2

)
,

and the limit local threshold is

w2
local = cos2

(
tan−1

(√
5− C

2

))
, (42)

where

C =
3

5

3N2 − 7

(N − 1)2
. (43)

Proof: The proof is given in Appendix D. �
Note that limN→∞ C =

9

5
: for N large enough,

w2
local ≈ cos2

(
tan−1

(
2√
5

))
. (44)

For N = 10, according to (16) this corresponds to the limit:

PFAlocal ≈ 10−2.52 = PFAlim.

thus local overlap is the limiting factor for the white
noise setting.

2) On Non-Local Overlap: First, consider the case where
the target is searched over the whole spectral domain i.e. D =
[0, 1]. This corresponds to the operational context where a single
target is searched in the scene. In this case, the manifold γ
in (10) is closed. In order to compute the non-local limit an-
gle φnon-local, one should evaluate criterion (35). The following
corollary simplifies the criteria.

Corollary IV.1.6: Consider a tube lying on the sphere around
the manifold γ defined in (10). Define Ξ′ as:

Ξ′ =

{
(θ, θ′) : θ �= θ′,

∂
∣∣s(θ)Hs(θ′)

∣∣
∂θ

= 0

}
. (45)

Then when D = [0, 1], φnon-local in (35) reduces to:

φnon-local = min
(θ,θ′)∈Ξ′

1

2
cos−1

∣∣s(θ)Hs(θ′)
∣∣ . (46)

and otherwise, when D = [θ1, θ2]� [0, 1], φnon-local in (36) re-
duces to

φnon-local =min

{
min

(θ,θ′)∈Ξ′

1

2
cos−1

∣∣s(θ)Hs(θ′)
∣∣ , E
}
. (47)

where E has been defined in (37), with B = {θ1, θ2} × [0, 2π]
and ξ = (θ, α), ξ′ = (θ′, α′).

Proof: The proof is provided in Appendix E. �
This simplif ication allows us to investigate the critical points

with (θ �= θ′) of ambiguity maps
∣∣s(θ)Hs(θ′)

∣∣ such as the
examples drawn on Fig. 6. In the case of a closed mani-
fold, i.e., D = [0, 1], the search procedure (46) becomes two-
dimensional. When D = [θ1, θ2]� [0, 1], one has to evaluate
(37) in order to compute (47). The search procedure (47) is
thus three-dimensional. Under white noise, γ is shift-invariant.
The search space can be further simplified and is of dimen-
sion 1: indeed, in this case, the product

∣∣s(θ)Hs(θ′)
∣∣ depends

only on the difference δ = θ′ − θ. Finding the local maxima
of
∣∣s(θ)Hs(θ′)

∣∣ simply reduces in finding the local maxima of
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Fig. 6. Examples of ambiguity maps
∣
∣s(θ)Hs(θ′)

∣
∣ drawn for θ, θ′ ∈ D0 for highly correlated noise (see Eq. (52) for the definition of ρ), with N = 10.

Crosses represent local maxima.

Fig. 7. Autocorrelation of s under white noise (48) for N = 10. Values
θ1, θ2 represent the limits of a cell Dk = [θ1, θ2].

∣∣s(θ)Hs(θ + δ)
∣∣ for any fixed θ.

∣∣s(θ)Hs(θ + δ)
∣∣ represents the

autocorrelation of s, and it is well known that:
∣∣s(θ)Hs(θ + δ)

∣∣= 1

N

∣∣∣∣ sin(πδN)

sin(πδ)

∣∣∣∣ . (48)

The autocorrelation of s is represented in Fig. 7. In this case,
in a single cell Dk the set Ξ′ is empty since the derivative of∣∣s(θ)Hs(θ + δ)

∣∣ only vanishes for δ = 0. If D = [0, 1], φnon-local

can be readily obtained from the first secondary lobe.

C. On Edge Effects

If D = [θ1, θ2]� [0, 1], then B = {θ1, θ2} × [0, 2π] and one
has to take into account edge effects. The result in Appendix A
shows that the tubes around the sub-manifolds {γ(θ1, α), α ∈
[0, 2π]} and {γ(θ2, α), α ∈ [0, 2π]} do not self-overlap. We
simply check that those tubes do not overlap with each other:

Proposition IV.3: Consider the tube around the manifold
γ defined in (10) on a cell D = [θ1, θ2]� [0, 1]. Barring the
unlikely case where the length of the manifold for fixed α is
smaller than φ, no edge effects appear if

φ < φedge �
1

2
cos−1

(∣∣s(θ1)Hs(θ2)
∣∣) . (49)

In particular, under white noise, if [θ1, θ2] is a cell Dk as defined
in (6), s(θ1)Hs(θ2) = 0, so that φedge = π/4.

Proof: No edge effect occurs if:

φ < min
α1,α2

1

2
cos−1

(
γ(θ1, α1)

Tγ(θ2, α2)
)
. (50)

With (59), the minimum (50) is reached for α1 − α2 =
s(θ1)s(θ2). In this case, γ(θ1, α1)

Tγ(θ2, α2) =
∣∣s(θ1)H

s(θ2)
∣∣, and the rightmost term of (50) reduces to φedge in (49).

�

V. NUMERICAL RESULTS

Let us check the validity of Eq. (16). Fig. 8(a) presents the
PFA-threshold relationship given by Eq. (16) and empirically
computed thresholds using 108 complex circular white Gaus-
sian noise samples for a steering vector size of N = 10. The
continuous research over the domain D is replaced by a discrete
search using 30 tests in the cell, where D =D0.

The formula seems to fit very well when the PFA is low
enough (or, equivalently, if the threshold w is high enough), and
is quite different from the on-grid relationship, also plotted in
Fig. 8, due to the influence of the second term in (15). It is not
valid for PFA close to 1 because of overlap (it even exceeds
1). However, such high PFA have no practical interest for
standard applications.

It is not trivial to verify the limit overlap value (44) simply by
looking at Fig. 8(a): overlap stops having a significant impact
on the relationship well before attaining wlim. Let us check our
value of wlim by exhibiting a well-chosen point u of the tube
belonging to more than one cross-section for a threshold w
very close to wlim, with w < wlim, under white noise. Indeed,
consider (for any θ, α ∈ D × [0, 2π] since γ is shift invariant),
the point of the tube

u= cos(φ)γ(θ, α) + sin(φ)n , (51)

with cosφ= w and n is the unit norm vector such that:

n∝ γ(θ, α) +
∑

i,j∈[1,2]

βiβj

(
∂2γ

∂μi∂μj

)
,
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Fig. 8. Comparison between the theoretical PFA-threshold given in (16) for (a) and (14) for (b) and the empirical Monte Carlo PFA-threshold relationships
for N = 10 and for several values of ρ (52). The relationship is drawn for the search domain D0. The on-grid relation (5) is also drawn for comparison
purposes. The limit overlap threshold wlim proposed in (24) is in purple.

where μ is the parametrization defined in (31), and

(β1, β2) = argmax
(β1,β2)∈S1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂μi∂μj

)∥∥∥∥∥∥
2

,

where the right quantity is maximized numerically with β1 =
sin(ϕ), β2 = cos(ϕ). Note that, using (54), n is orthogonal to
γ(θ, α) so thatu is indeed a point of the tube sinceuTγ(θ, α) =
cosφ= w and ‖u‖= 1. Fig. 9 shows that u belongs to only
one cross-section when φ < φlim and to three cross-sections
when φ > φlim. Indeed, defining the complex vector u by u=[
Re(u)
Im(u)

]
, see that the derivative of the product

∣∣uHs(θ + δ)
∣∣2

vanishes to 0 above the threshold once in the first case, and

three times in the second. Using (11), this means that uT ∂γ

∂θ
=

uT ∂γ

∂α
= 0 for 3 values ξi =

(
θ + δi,∠uHs(θ + δi)

)
so that

u belongs to 3 cross-sections CSξi according to the definition
(23). Even though it is hard to detect visually in Fig. 8(a),
overlap occurs right before the limit threshold value wlim found
in (42): the limit threshold is very conservative and formula (16)
can be used as a good approximate of the true PFA threshold
relationship for thresholds well below that.

As mentioned before, test (7) is not CFAR with respect to Γ
or D. To showcase this, we will use the following well-known
model of covariance matrices:

Γ(ρ) = To
([
1 ρ . . . ρN−1

])
, (52)

where To(.) is the Toeplitz matrix operator, and ρ is a scalar
that defines the level of correlation of the noise. It can be
seen in Fig. 10 that, for a fixed radius, the surface of the
tube around the manifold of whitened signals s(θ) for θ ∈
D increases with ρ when D =D0, and decreases with ρ for
D =D5. We thus have also compared the formula (15) with
empirical thresholds for colored noise (Γ �= I). Results can be
observed in Fig. 8(b) for the edge cell D0 where detection

Fig. 9. Illustration of the overlap phenomenon: squared projection of u
defined in (51) on s(θ + δ) for θ + δ ∈ D0 for two values of φ: φ= 0.95φlim
and φ= 1.05φlim.

performance is lower on average. Again, it can be seen that
the derived PFA-threshold seems to fit perfectly with what
is observed empirically for PFA values that are low enough.
Zooming on the leftmost part of the curves, it can be seen
that the overlapping phenomenon for low PFA values tends to
increase slightly with ρ: the gap between the curves widens
slightly and lasts a bit longer as noise becomes more cor-
related. This is not surprising, as correlated noise bends the
manifold, increasing the likeliness of both local and non-local
global overlap. The formula is still a good approximation of the
PFA-threshold relationship well before the limit threshold for
no overlap wlim.

To verify this behavior, we plot the relationship between
ρ and the minimum threshold for which there is no overlap
wlim computed thanks to (26) on Fig. 11. The components
wlocal and wnon-local are obtained thanks to (40), (36). As we
suspected, wlim tends to increase with ρ. The arising of non-
local overlap can be explained by looking at the ambiguity
maps drawn on Fig. 6: as ρ increases, a side-lobe gets larger
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Fig. 10. Evolution of the PFA with ρ for fixed threshold w2 = 0.7, for
search domains D0 and D5.

Fig. 11. Comparison of the limit global overlap thresholds wlim (purple),
wlocal (red) and wnon-local (blue) versus ρ obtained with (26), (40) and (36)
with N = 10, in the cell D0.

and closer and closer to the origin, increasing the likeliness of
non-local overlap.

VI. CONCLUSION

This article addresses the off-grid detection problem using
the NMF-GLRT by finding an analytical PFA-threshold re-
lationship. Several new closed-form expressions under white
noise have been expressed. We then analyzed its domain of
validity thanks to the application of results on the overlap phe-
nomena for tubes around multi-dimensional manifolds to the
off-grid signal model. This analysis shows that our relationship
is valid for most common radar applications for which the PFA

is low enough. Finally, simulations comparing our theoretical
relationship with empirical thresholds computed with Monte
Carlo trials validate our results.

At first glance, the tools used in this paper cannot be applied
to the analysis of the PD of the off-grid GLRT or the extension
of the PFA-threshold relationship to the adaptive case for Γ
unknown. This is because, in both cases, the distribution of the

whitened received vector is not uniform over the unit sphere,
and so the probabilities cannot be obtained directly as a ratio
of surfaces anymore.

APPENDIX

In the first section of the appendix, we prove that the tube
Ton-grid, defined in (13) for fixed θ, does not overlap. Then, we
provide proofs for the corollaries of Section IV.

A. On the Absence of Overlap of the Tube Ton-grid (13) for
Fixed θ

Since

∥∥∥∥∂γ(θ, α)∂α

∥∥∥∥= 1, γ(θ, .) is parameterized by arc

length. The radius of first curvature is then defined as ρ=∥∥∥∥∂
2γ(θ, α)

∂α2

∥∥∥∥
−1

=1. Then, since sin(cos−1 w)< 1 for all w,

there is no local overlap according to (9).
Let us prove there is no non-local overlap either by searching

the pairs of points of interest (α, α′) in Ξ, that verify:

γ(θ, α′)T γ̇(θ, α) = γ(θ, α)T γ̇(θ, α′) = 0 .

Those conditions imply that:

(cosα′γ1(θ)+sinα′γ2(θ))
T
(cosαγ2(θ)− sinαγ1(θ)) = 0 ,

that leads to the condition:

− cosα′ sinα‖γ1(θ)‖+ sinα′ cosα‖γ2(θ)‖= 0 ,

and equivalently: sin(α− α′) = 0.
Thus, the set Ξ is defined as:

Ξ = {(α, α′) : α �= α′, sin(α− α′) = 0} ,
= {(α, α+ π), α ∈ [0, π]} .

For any α ∈ [0, π], we have γ(α, θ)Tγ(α+ π, θ) =−1, so that

φnon-local =
1

2
arccos(−1) =

π

2
according to (36): there is no

non-local overlap for Ton-grid. Thus, wlim = cosφlim = 0 and the
surface given by (13) is exact for any threshold w.

B. Proof of Proposition IV.1

Proof: Let γ(ξ)Tγ(ξ′) = f(ξ − ξ′). The quantity h(ξ, ξ′)
depends on ξ and ξ′ through γ(ξ)Tγ(ξ′) = f(ξ − ξ′) in
the denominator, and, by the way of Pξ′ in the numerator,

γ(ξ)T
∂γ(ξ′)

∂ξ′k
and

∂γ(ξ)T

∂ξi

∂γ(ξ′)

∂ξ′j
for k ∈ [1,M ] and (i, j) ∈

[1,M ]2. By using the derivatives of f , it can be shown that those
two terms and h depend only on the difference ξ − ξ′. �

C. Proof of Corollary IV.1.2

To prove Corollary IV.1.2, we need to introduce the following
lemma on the existence of the parametrization μ:

Lemma A.1: Let γ(ξ) be a M -dimensional shift-invariant
manifold. The parametrization μ chosen in (31) is well defined,
and its first fundamental form is equal to I:

∂γT

∂μi

∂γ

∂μj
= δi,j .
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Proof: Consider G= (gij)1≤i,j≤N defined as in (29).
Note that by differentiating γTγ = 1 twice, we have:

γT ∂2γ

∂ξi∂ξj
=− ∂γ

∂ξi

T ∂γ

∂ξj
. (53)

Let f(ξ − ξ′) = γ(ξ)Tγ(ξ′). It can be rewritten equivalently
f(y) = γ(ξ)Tγ(ξ + y), which gives, using (53):

gij =
∂γT

∂ξi

∂γ

∂ξj
=− ∂2f

∂yi∂yj

∣∣
y=0

.

Thus, the coefficients gij do not depend on ξ, and so neither
does G. We can define G1/2 as in (30) since G is positive
definite. Then, the parametrization (31) in the corollary is well
defined, so that ξ =G−1/2μ. Then:

∂γT

∂μi

∂γ

∂μj
=
∑
m,k

∂ξk
∂μi

∂γT

∂ξk

∂γ

∂ξm

∂ξm
∂μj

,

=
∑
m,k

G
−1/2
k,i Gk,mG

−1/2
m,j ,

=
(
G−T/2GG−1/2

)
i,j

,

= δi,j .

�
The following proves Corollary IV.1.2:

Proof: Equation (32) has been proved in the above lemma.
Let us prove (33). First, note that differentiating γTγ = 1
twice yields:

γT ∂2γ

∂μi∂μj
=− ∂γ

∂μi

∂γ

∂μj
=−δij . (54)

Next, let us introduce Christoffel symbols of the first kind:

Γijk =
∂2γT

∂μi∂μj

∂γ

∂μk
. (55)

It can be easily verified that those symbols can be expressed
as a function of the derivatives of the first fundamental form
G′ =

(
g′ij
)
1≤i,j≤N

:

Γijk =
1

2

(
∂g′ik
∂μj

+
∂g′jk
∂μi

−
∂g′ij
∂μk

)
,

which gives, since according to (32) g′ij = δi,j :

Γijk = 0 . (56)

Let us now consider Equation (28) with parametrization μ. The
denominator reduces to 1:∑

i,j

βiβj
∂γT

∂μi

∂γ

∂μj
=
∑
i,j

βiβj δi,j =
∑
i

β2
i = 1 .

We thus have:

cot2 φlocal = sup
β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj (I−Pμ)
∂2γ

∂μi∂μj

∥∥∥∥∥∥
2

,

= sup
β∈SM−1

⎛
⎜⎝
∥∥∥∥∥∥
∑
i,j

βiβj
∂2γ

∂μi∂μj

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥Pμ

∑
i,j

βiβj
∂2γ

∂μi∂μj

∥∥∥∥∥∥
2
⎞
⎟⎠ , (57)

where the maximization on μ has been omitted since the man-

ifold γ is shift-invariant.

(
γ,

∂γ

∂μ1
, . . . ,

∂γ

∂μM

)
forms an or-

thonormal family so that the second term of (57) is, with
Pythagoras’s theorem:
∥∥∥∥∥∥Pμ

∑
i,j

βiβj
∂2γ

∂μi∂μj

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
i,j

βiβjγ
T ∂2γ

∂μi∂μj

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβj
∂γT

∂μk

∂2γ

∂μi∂μj

∣∣∣∣∣∣
2

,

=

∣∣∣∣∣∣
∑
i,j

βiβjδi,j

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβjΓijk

∣∣∣∣∣∣
2

,

= 1,

using (54), (55) and (56). �

D. Proof of Corollary IV.1.5

To prove Corollary IV.1.5, we must introduce the following
Lemma to use Corollary IV.1.2.

Lemma A.2: Under white noise (Γ= I), the manifold γ as
defined in (10) is shift invariant.

Proof: The complex manifold s(θ) can be expressed as:

s(θ)Hs(θ′) =
1√
N

N−1∑
k=0

e2iπk(θ
′−θ),

= f(θ − θ′) ,

=Re (f(θ − θ′)) + i Im (f(θ − θ′)).

where f(θ − θ′) = eiπ(N−1)(θ′−θ) sin(πN(θ′ − θ))

sin(πN(θ′ − θ))
. Thus, one

finds:

γ(θ, α)Tγ(θ′, α′) = cos(α− α′)Re (f(θ − θ′))

+ sin(α− α′) Im (f(θ − θ′)),

which shows the manifold of interest γ is shift-invariant. �
We are now able to prove Corollary IV.1.5:

Proof: In order to find a parametrization μ of γ satisfying
the condition (32), one can use the following vector d′(v)
instead of d(θ) in the derivations, changing the origin of time
(d and d′ model the same problem):

(d′(v))n =
1√
N

exp

(
2iπ

(
n− N − 1

2

)
l−1v

)
,

for 0≤ n≤N − 1 and where

l = π

√
N2 − 1

3
, v = l θ.
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The parametrization μ= (v, α) for γ written with d′ verifies
condition (32). Let us compute (33):

∂2γT

∂2v

∂2γ

∂2v
= C,

∂2γT

∂v ∂α

∂2γ

∂2v
=

∂2γT

∂v ∂α

∂2γ

∂2α
= 0 ,

∂2γT

∂2v

∂2γ

∂2α
=

∂2γT

∂v ∂α

∂2γ

∂v ∂α
=

∂2γT

∂2α

∂2γ

∂2α
= 1 ,

where C has been defined in (43). Injecting in (33), with β1 =
cosϕ, β2 = sinϕ and maximizing on ϕ, we get:

cot2 φlocal =max
ϕ

C cos4 ϕ+ 6 cos2 ϕ sin2 ϕ+ sin4 ϕ− 1,

=max
ϕ

(C − 5) cos4 ϕ+ 4 cos2 ϕ. (58)

The maximum is obtained for cos2 ϕ=
2

5− C
. Then, injecting

this value in (58) and simplifying, we obtain:

cot2 φlocal =
4

5− C
.

Since w2
local = cos2

(
tan−1 1√

cot2 φlocal

)
, result (42) holds.

�

E. Proof of Corollary IV.1.6

Proof: First, see that:

γ(θ, α)Tγ(θ′, α′) = cos(α− α′)Re
(
s(θ)Hs(θ′)

)
+ sin(α− α′) Im

(
s(θ)Hs(θ′)

)
,

=Re
(
e−i (α−α′) s(θ)Hs(θ′)

)
,

≤
∣∣s(θ)H s(θ′)

∣∣ , (59)

with the equality attained for α− α′ = s(θ)Hs(θ′). This im-
plies that the only points of Ξ worth investigating are the pairs
of points (θ, α), (θ′, α′) with (α, α′) chosen arbitrarily so that
α− α′ = s(θ)Hs(θ′) and (θ, θ′) being a critical point of the

quantity
∣∣s(θ)H s(θ′)

∣∣ which define the set Ξ′ in (45). �
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