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Abstract— In this paper, an expression of the optimum non-Gaussian
radar detector is derived from the non-Gaussian SIRP model (Spheri-
cally Invariant Random Process) clutter and a Padé approximation of the
characteristic functionof the SIRP. The SIRP model is used to perform
coherent detection and to modelize the non-Gaussian clutter as a com-
plex Gaussian process whose variance is itself a positive random variable
(r.v.). The probability density function (PDF) of the variance character-
izes the statistics of the SIRP and after performing a Padé approximation
of this PDF from reference clutter cells we derive the so-called Padé Esti-
mated Optimum (Radar) Detector (PEOD) without any knowledge about
the statistics of the clutter. We evaluate PEOD performancefor an un-
known target signal embedded in K-distributed clutter and compare with
optimum detectors performance (optimum in particular clut ter statistics
such as Optimum K Detector - OKD - in K-distributed clutter).

I. INTRODUCTION

Coherent radar detection against non-Gaussian clutter has
gained many interests in the radar community since experi-
mental clutter measurements made by organizations like MIT
[1] have shown to fit non-Gaussian statistical models. One
of the most tractable and elegant non-Gaussian model results
in the so-calledSpherically Invariant Random Process(SIRP)
theory which states that non-Gaussian random vector is the
product between Gaussian random vector with a non-negative
random variable (r.v.) (the variance of the Gaussian process
is itself a r.v.). This model allows to derive non-Gaussian joint
probability density function (PDF) and then optimum radar de-
tector strategies. For example in [2], the optimum radar de-
tector is derived in the presence of composite disturbance of
known statistics modeled as SIRP.

The goal of this work consists in estimating the variance
PDF of the noise with a Padé approximation. This allows to
derive in a closed form the joint PDF of the SIRV and to per-
form, from the likelihood ratio test (LRT), the Padé Estimated
Optimum Detector (PEOD) for non-fluctuating and unknown
target signal. Padé approximation is performed aftera poste-
riori variance resampling which means to deal directly with
the received clutter data. It is no more necessary to have any
knowledge about the clutter statistics.

II. GENERAL RELATIONS OF DETECTION THEORY

A. Likelihood ratio test

We consider here the basic problem of detecting the pres-
ence (H1) or absence (H0) of a complex signals in a set ofN
measurements ofm-complex vectorsy = yI + j yQ corrupted

by a sumc of independent additive complex noises (noises +
clutter). The problem can be described in terms of a statistical
hypothesis test :

H0 : y = c (1)

H1 : y = s+ c (2)

When present, the target signals corresponds to a modified
version of the perfectly known transmitted signalt and can be
rewritten ass = AT (θ) t. A is the target amplitude and we
suppose determined all the other parametersθ which charac-
terize the target after the transformationT (Doppler frequency,
time delay, ...). In the following,p = T (θ) t. The observed
vectory is used to form the LRTΛ(y) which is compared to a
thresholdη in order to reach a desired false alarm probability
(Pfa) value :

Λ(y) =
py(y/H1)

py(y/H0)

H1

>
<
H0

η. (3)

LRT performance follow from the statistics of the data.
Pfa is the probability of choosingH1 when the target is ab-
sent, and the detection probability (Pd) is the probability of
choosingH1 when the target is present, that is :

Pfa = IP(Λ(y) >
H0

η) and Pd = IP(Λ(y)
H1

> η), (4)

where IP(X > a) is the probability ofX being greater thana
under the PDF of the r.v.X.

B. Gaussian clutter case

When the clutterc is supposed to be complex Gaussian-
distributed (CN (0, 2σ2M)), the so-called Optimum Gaussian
Detector (OGD) gives from (3) and for a known signals :

<(y† M−1s)
H1

>
<
H0

σ2 λ +
s† M−1s

2
. (5)

λ = log(η), <(z) denotes the real part ofz and† is the trans-
pose conjugate operator.

When the target signals is unknown and non-fluctuating, the
generalized likelihood ratio test (GLRT) yields to :
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|p† M−1 y|2
H1

>
<
H0

2σ2λ p†M−1p. (6)

Statistic tests underH0 andH1 are respectively exponential
and Rice-Nagakami-distributed and correspondingPfa andPd

expressions are given in [3]. For fluctuating target,Pd expres-
sion has to be integrated over the fluctuation PDF, generally
Swerling-K fluctuations (K is an integer), and expressions are
given in [3].

C. Non-Gaussian clutter case - SIRV model

In the case of non-Gaussian clutter, detection strategies can
be derived if we consider a particular clutter nature, i.e. if ana
priori hypothesis is made on the clutter statistic.
Non-Gaussian clutter and general radar detector expressions
come from the SIRP representation ([4], [5], [6]).
SIRV (Vector) model interpretes each element of the clutter
vector c as the product of am-complex Gaussian vectorx
(CN (0,∈M)) with a positive r.v.τ , that isc = x

√
τ .

The PDF of the variableτ is called thecharacteristic func-
tion of the SIRV and the so formed vectorc is, conditionnally
to τ , a complex Gaussian random process (CN (0,∈ τ M))
with joint PDFp(c/τ). The joint PDF of the SIRV gives :

p(c) =

∫ +∞

0

τ−m

(2π)m|M | exp

(

−c†M−1c
2τ

)

p(τ)dτ. (7)

From (7), py(y/H0) = pc(y) and py(y/H1) = py(y −
s/H0) for a known target signals. The LRT becomes in this
case :

∫ +∞

0

[

exp

(

−q1(y)

2τ

)

− exp

(

λ − q0(y)

2τ

)]

p(τ)

τm
dτ

H1

>
<
H0

0,

(8)
whereq0(y) = y†M−1y, q1(y) = q0(y− s) for a known signal
s andλ = ln(η).

When the target signals is unknown, the detection strategy
is given by (8) where now :

q1(y) = y†M−1y − |p†M−1y|2
p†M−1p

. (9)

D. Optimum K Detector (OKD)

In the case of K-distributed clutter (sizem) with parameters
ν and b, the r.v. τ is Gamma-distributed with parametersν
andβ = 2/b2. Following the same processes with (8), the
expression of the so-called Optimum K-distributed Detector
(OKD) becomes∀m ≥ 2 :

(

q1(y)

q0(y)

)

ν−m
2

.
Kν−m

(

b
√

q1(y)
)

Kν−m

(

b
√

q0(y)
)

H1

>
<
H0

η, (10)

whereq0(y) = y† M−1y andq1(y) is given by (9) for unknown
signals.
For m = 1 the expression is given in [3].

Padé PDF approximation ofp(τ) provides an expression
in terms of a sum of weighted complex decaying exponential
which allows to perform integration overp(τ) in (8) to give the
so-called Padé Estimated Optimum (radar) Detector (PEOD).
Padé approximation method is presented in details in [7], [8].
In the next section we just recall the resulting expressionsof
PDF and CDF (cumulative density function) approximation.

III. PADÉ ESTIMATED OPTIMUM (RADAR) DETECTOR

(PEOD)

Padé approximation method provides the following PDF and
cumulative density function (CDF) expressions :

p̃(z) =
M
∑

k=1

λk e−αk z and F̃ (z) = 1 −
M
∑

k=1

λk

αk

e−αk z.

(11)
Padé coefficients{αk}M

k=1 and{λk}M
k=1 are in pairs conjugate

when complex or real and all{αk} real parts are positive (to as-
sure the PDF convergence towards zero whenz tends to+∞).

Whenp(τ) is replaced bỹp(τ) in (8), integration becomes
henceforth tractable [9] and yields to the PEOD expression :

(

q1(y)

q0(y)

)

1−m
2

.

M
∑

k=1

λk(αk)
m−1

2 K1−m

(

√

B1
k(y)

)

M
∑

k=1

λk(αk)
m−1

2 K1−m

(

√

B0
k(y)

)

H1

>
<
H0

η,

(12)
whereq0(y) = y† M−1 y, q1(y) = q0(y−s) for sknown,q1(y)

is given by (9) fors unknown,Bj
k(y) = 2αkqj(y), j = 0, 1.

Based on moment generating function (MGF) approxima-
tion, Padé approximation method requires knowledge of the
moments of the r.v.τ up to the orderL + M + 1 or estima-
tion of the moments from samples ofp(τ) (the integerL is less
thanM (generallyL = M − 1) and needed to perform Padé
approximation. See [7], [8] for more details). But neither true
moments nor samples fromp(τ) are available.

In the next section we propose to regenerate variance sam-
ples according to thea posterioriPDF (APDF) of the variance



3

(from reference clutter cells and with a non-informative vari-
ance prior) and to perform Padé approximation with the esti-
mated moments of the resamples.

We have made comparisons between the two approaches via
simulations and it can be shown that errors due to the moments
estimation does not involve significant loss of performancein
PEOD.

A. Variance resampling

From Nr reference clutter cells of sizem, R =
[r1, · · · , rNr

]T wherer i = [ri(1), · · · , ri(m)]T and with the
Bayes’rule, we regenerateNr variance samples according to
the variance APDF.
The Bayes’rule provides us directly the APDF :

p(τ/r i) =
p(r i/τ)g(τ)

p(r i)
. (13)

p(r i) is the normalization constant calculated in integrating
the numerator of (13) overτ :

p(r i) =

∫ +∞

0

p(r/τi)g(τ)dτ. (14)

g(τ) is the prior density of the variance for the reference
clutter cells. As we do not have any knowledge (except the
variance positivity) about the variance density, we choosea
non-informative prior, called Jeffreys’ prior, which is propor-
tional to the square root of Fisher’s information measure.
So, we have :

g(τ) =
1

τ
. (15)

After calculation, the expression of the variance APDF be-
comes an inverse gamma PDF (IG PDF) and theNr variance
are resampled according to :

τNr

i=1 ∼ IG
(

m,
2

r †i M−1 r i

)

(16)

whereIG(.) is the inverse Gamma distribution (i.e. the PDF
of the inverse of a gamma r.v.).

We can also choose aconjugateprior density in our case be-
cause of the form of the likelihood of the data.
A prior density is calledconjugateif the resulting APDF own
to the same PDF family than the prior density. So, we could
choose an inverse gamma PDF for the prior density with pa-
rametersap andbp (the subscriptp is for prior) :

g(τ) =
1

b
ap
p Γ(ap)

τ−ap−1e
− 1

τbp , (17)

and theNr variance are so resampled according to :

τNr

i=1 ∼ IG
(

m + ap,
2bp

2 + bpr †i M−1 r i

)

. (18)

We have to chooseap andbp values to keep the prior density
as non-restrictive as possible.
On figures (1) and (2) differentIG PDF are plotted for differ-
ent values of the parametersap andbp.
If ap −→ 0 andbp −→ +∞ thenIG(τ ; ap, bp) ∝ ap/τ . That
is, the conjugate prior density tends to a non-informative den-
sity.
This is shown on figure (3) and we chooseap = 10−3 and
bp = 3.65.
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Fig. 1. Inverse gamma(x;ap,bp) PDF for bp = 0.01 and ap =
0.001, 2.5, 15.3.
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Fig. 2. Inverse gamma(x;ap,bp) PDF for bp = 3.65 and ap =
0.001, 2.5, 15.3.

All the L + M + 1 moments are then computed empirically
from whichM Padé coefficients{α}k and{λ}k are derived in
order to perform PEOD.
Variance resampling allows to deal directly with the data with-
out statistical assumption on the clutter and PEOD perfor-
mances are shown below. PEOD expression stands even if the
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Fig. 3. Comparison between IG(x;ap ,bp) anda/x for smallap value (ap =
10−3) and highbp value (bp = 103).

characteristic functionp(τ) of the SIRV is theoritically un-
known like for Weibull clutter.
This is shown onfigure (6).

IV. SIMULATIONS

We compare the performances of the PEOD with those of
OGD and OKD.
K-distributed clutter is generated with different values of the
form parameterν = 0.5, 20. Smaller is the value ofν and
spikier is the clutter. Inversely, whenν is high, K-PDF tends
to a Gaussian distribution and this fact is confirmed through
OGD and OKD performances onfigure (5).
Moreover, from PEOD expression, we can deduce OGD and
OKD expression for particular variance PDF.
On figure (6)), we compare PEOD, OGD and OKD perfor-
mances (OKD with different values ofν) for an unknown tar-
get signal embedded in Weibull clutter.
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Fig. 4. Performances comparison between the OGD, OKD and PEOD for
K-distributed clutter (ν = 0.5, Pfa = 10−3, m = 10 integrated pulses)
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Fig. 5. Performances comparison between the OGD, OKD and PEOD for
K-distributed clutter (ν = 20, Pfa = 10−3, m = 10 integrated pulses)
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Fig. 6. Performances comparison between the OGD, OKD and PEOD for
an unknown target signal in Weibull-distributed clutter (a = 0.2, b =
2 ; Pfa = 10−3, m = 10 integrated pulses andν = 0.1, 0.5, 2, 10
for OKD). SNR given on x-axis is for one pulse :0 dB before coherent
post-integration corresponds to10 log 10(m) dB after the coherent pulse
integration.

V. CONCLUSIONS

The present paper has addressed the contribution of Padé ap-
proximation method to the problem of coherent radar detection
of a target embedded in a clutter with unknown statistics. The
simple expression of PEOD (Padé Estimated Optimum Detec-
tor) allows to build the optimum radar detector and to evaluate
its detection performances without having the knowledge of
the clutter statistic.

VI. OUTLOOKS : IMPROVING PEOD

At that time we are now able to give an improvement to
PEOD, that is to say, to avoid the Padé approximation step of
the variance PDF in estimating this PDF thanks to a bayesian
estimator from reference clutter cells and the same variance
prior density.
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The resulting expression is called BORD (for Bayesian Op-
timum Radar Detector) and will be found in further papers.

BORD is "self-adaptative" to the clutter statistics because
of its only dependence of the data (references and observed
data). BORD performances reach OKD performances for K-
distributed clutter and can apply for any clutter statistics (see
on figures (7) and (8)). The only hypothesis made at the begin-
ning of the study is the clutter SIRP modelization.
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Fig. 7. Performances comparison between the OGD, OKD and BORD for
K-distributed clutter (ν = 0.5, Pfa = 10−3, m = 10 integrated pulses).
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Fig. 8. Performances comparison between the OGD, OKD and BORD for
K-distributed clutter (ν = 20, Pfa = 10−3, m = 10 integrated pulses).
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