PEOD : Padé Estimated Optimum (radar) Detector
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Abstract—In this paper, an expression of the optimum non-Gaussian by a sumc of independent additive complex noises (noises +

radar detector is derived from the non-Gaussian SIRP model $pher|- Clutter) The problem can be descrlbed in terms Of a Stwbtl
cally Invariant Random Process) clutter and a Padé approxination of the hypothesis test -

characteristic functionof the SIRP. The SIRP model is used to perform
coherent detection and to modelize the non-Gaussian clutteas a com-
plex Gaussian process whose variance is itself a positiven@om variable

(r.v.). The probability density function (PDF) of the variance character- Hy:y = c (1)
izes the statistics of the SIRP and after performing a Padé gpoximation

of this PDF from reference clutter cells we derive the so-ct#d Padé Esti- Hi:y = s+c (2)
mated Optimum (Radar) Detector (PEOD) without any knowledge about

the statistics of the clutter. We evaluate PEOD performancedor an un- ; e
known target signal embedded in K-distributed clutter and compare with When present, the target Slgrmiorresponds to a modified

optimum detectors performance (optimum in particular clutter statistics ~ Version of the perfectly known transmitted sighaind can be
such as Optimum K Detector - OKD - in K-distributed clutter). rewritten ass = AT(0)t. A is the target amplitude and we
suppose determined all the other parametensich charac-

terize the target after the transformatibriDoppler frequency,

[. INTRODUCTION time delay, ...). In the followingp = T'(9)t. The observed

\/F%ctory is used to form the LRT\(y) which is compared to a

Coherent radar detection against non-Gaussian clutter h holdn in order t h a desired fal I babilit
gained many interests in the radar community since expeF resholdy in order to reach a desired false alarm probability

mental clutter measurements made by organizations like MI‘IPf“) value :

[1] have shown to fit non-Gaussian statistical models. One py(y/Hy) Hy
of the most tractable and elegant non-Gaussian model sesult Aly) =="—= 2. 3)
in the so-calledpherically Invariant Random Proce€SIRP) y(y/Ho) H,

theory which states that non-Gaussian random vector is the| RT performance follow from the statistics of the data.

product between Gaussian random vector with a non-negatiya;a is the probability of choosindZ; when the target is ab-

random variable (r.v.) (the variance of the Gaussian pmcesent, and the detection probability?) is the probability of
is itself a I’.V.). This model allows to derive non-Gaussntj ChoosingH1 when the target is present’ that is :

probability density function (PDF) and then optimum radexr d

tector strategies. For example in [2], the optimum radar de-

tector is derived in the presence of composite disturbafce o Pr — P(A(Y) > and P, = P(A gl 4
known statistics modeled as SIRP. Ja (AY) Ho " ¢ (Ay) > m). @)

The goal of this work consists in estimating the variancé/Nere RX > a) is the probability ofX' being greater than
PDF of the noise with a Padé approximation. This allows tynder the PDF of the r.v.
derive in a closed form the joint PDF of the SIRV and to per-
form, from the likelihood ratio test (LRT), the Padé Estistat B. Gaussian clutter case
Optimum Detector (PEOD) for non-fluctuating and unknown "
target signal. Padé approximation is performed adtposte- When the clutterc is supposed to be complex Gaussian-
riori variance resampling which means to deal directly witldistributed CA/(0, 202M)), the so-called Optimum Gaussian
the received clutter data. It is no more necessary to have abBgtector (OGD) gives from (3) and for a known sigsal
knowledge about the clutter statistics.

Hy 1 -1
R(yTM~1g) 202)\+M. (5)

Il. GENERAL RELATIONS OF DETECTION THEORY o ?
A = log(n), R(z) denotes the real part efand is the trans-
pose conjugate operator.

We consider here the basic problem of detecting the pres-
ence {{,) or absencel{,) of a complex signasin a set of N When the target signalis unknown and non-fluctuating, the
measurements ofi-complex vectory = y; +jy, corrupted generalized likelihood ratio test (GLRT) yields to :

A. Likelihood ratio test



H,q v—m
Ip"M~ty* 2 20%Ap"™™M ~'p. (6) a7 Kiom (b Q1(y))fg i

'Ku—'rn (b vV QO(V)) Ho

whereq(y) = y' M 'y andq (y) is given by (9) for unknown
ignals.
orm = 1 the expression is given in [3].

Statistic tests undell, and H, are respectively exponential
and Rice-Nagakami-distributed and correspondtigand P
expressions are given in [3]. For fluctuating target.expres-
sion has to be integrated over the fluctuation PDF, genera
Swerling# fluctuations { is an integer), and expressions are

givenin [3]. Padé PDF approximation qf(r) provides an expression

in terms of a sum of weighted complex decaying exponential

which allows to perform integration oveftr) in (8) to give the

so-called Padé Estimated Optimum (radar) Detector (PEOD).
In the case of non-Gaussian clutter, detection strategies cPadé approximation method is presented in details in [T], [8

be derived if we consider a particular clutter nature, f.ania  In the next section we just recall the resulting expressifns

priori hypothesis is made on the clutter statistic. PDF and CDF (cumulative density function) approximation.

Non-Gaussian clutter and general radar detector expressio

come from the SIRP representation ([4], [5], [6]).

SIRV (Vector) model interpretes each element of the clutter 1ll. PADE ESTIMATED OPTIMUM (RADAR) DETECTOR

vector ¢ as the product of an-complex Gaussian vector (PEOD)

(CN(0, e M)) with a positive r.v.7, that isc = X /7.

C. Non-Gaussian clutter case - SIRV model

Padé approximation method provides the following PDF and

The PDF of the variable is called thecharacteristic func- cumulative density function (CDF) expressions :

tion of the SIRV and the so formed vectois, conditionnally M \
to 7, a complex Gaussian random proce€V(0, € 7 M)) ) =S Ae % and F(z)=1-5 2k —anz
Bz) =" e (2) > re

with joint PDFp(c/7). The joint PDF of the SIRV gives : 1 b1
(11)
. Padé coefficient§ay, } 22, and{\x}}L, are in pairs conjugate
p(c) = /+°° T " exp [ — c’M~'c p(F)dr. (7) when complex or real and gk } real parts are positive (to as-
o (2m)mM| 2T ’ sure the PDF convergence towards zero whnds to+oco).
From (7),py(y/Ho) = pc(y) andpy(y/Hy) = py(y — Whenp(7) is replaced byj(7) in (8), integration becomes

s/H,) for a known target signa. The LRT becomes in this henceforth tractable [9] and yields to the PEOD expression :
case:

m—1

2T 2T Tm H,

qo(y M met 5 Ho
wherego(y) = y'M 'y, ¢1(y) = qo(y — s) for a known signal Z Ar(ak) = Ki-m ( Bk(y)>

sand\ = In(n). k=1 (12)

wherego(y) =y M1y, g1 (y) = go(y—s) for sknown, g (y)

When the target signalis unknown, the detection strategy. = . Fron , .
is given by (8) where now : is given by (9) fors unknown,Bj (y) = 2 aq;(y), j =0, 1.

Based on moment generating function (MGF) approxima-

— (9) tion, Padé approximation method requires knowledge of the
ptM ™ p moments of the r.vr up to the order. + M + 1 or estima-
. tion of the moments from samplesffr) (the integell is less
D. Optimum K Detector (OKD) than M (generallyL = M — 1) ang?(nezeded to perform Padé

In the case of K-distributed clutter (sizg) with parameters approximation. See [7], [8] for more details). But neithreret
v andb, the r.v. 7 is Gamma-distributed with parameters moments nor samples frop{r) are available.
and = 2/b%. Following the same processes with (8), the
expression of the so-called Optimum K-distributed Detecto In the next section we propose to regenerate variance sam-
(OKD) becomes/m > 2: ples according to tha posterioriPDF (APDF) of the variance

tag—1
ql(y):yTM‘ly—i‘le o



(from reference clutter cells and with a non-informativeiva

ance prior) and to perform Padé approximation with the esti- N ( 2b,,
T ~IG |\ mtap, ———— ——— (18)

mated moments of the resamples. 2+ briM1r,

We have made comparisons between the two approaches vié’ve have to choose, andb, values to keep the prior density

. . . -restrictive as possible.
simulations and it can be shown that errors due to the mome#g "N €S . .
estimation does not involve significant loss of performaince hfigures (1) and (2) differefit PDF are plotted for differ-

ent values of the parameters andb,,.

PEOD.
If a, — 0 andb, — +oo thenZG(r;ap,by) x ap/7. That
is, the conjugate prior density tends to a non-informative-d
A. Variance resampling sity. . .
) This is shown on figure (3) and we choogg = 10~3 and
From N, reference clutter cells of sizen, R = — 3.65.
[ry,--,rn, )7 wherer; = [ry(1),--- ,7:(m)]T and with the ”
Bayes'rule, we regenerat¥, variance samples according to
the variance APDF. ,x10°8=0.001 oos, 2=25 ozs 2T153
The Bayes'rule provides us directly the APDF ;
p(ri/T)g(7) i ]
p(T/r;) = ——"—"—~. (13) 2
(/1) (o)
p(r;) is the normalization constant calculated in integrating | 1 ool
the numerator of (13) over :
+oo | /
w0 = [ ae/m)a(rin (14)
0
g(7) is the prior density of the variance for the reference ‘ . / ‘ . ‘ ‘
clutter cells. As we do not have any knowledge (except the ° * * * ° bl”: o 021" o0 o ®

variance positivity) about the variance density, we chamse
non-informative prior, called Jeffreys’ prior, which isqmor-  Fig. 1.  Inverse gamma(a,by) PDF for b, = 0.01 and a, =

tional to the square root of Fisher’s information measure. 0.001,2.5,15.3.
So, we have :
1 _x10°8 = 0.001 oA =153
9(1) = —. (15)

After calculation, the expression of the variance APDF be-
comes an inverse gamma PDRZ PDF) and theV, variance
are resampled according to :

2 .6
N.

Ty ~IG | m, ———— 16

=1 ( rI M —1 ri) ( ) on
whereZg(.) is the inverse Gamma distribution (i.e. the PDF .
of the inverse of a gammar.v.).

We can also choosecanjugateprior density in our case be- b =3.65
cause of the form of the likelihood of the data.
A prior density is calleconjugateif the resulting APDF own
to the same PDF family than the prior density. So, we could
choose an inverse gamma PDF for the prior density with pa-
rametersy, andb, (the subscripp is for prior) :

Fig. 2. Inverse gamma(a,,b,) PDF for b, = 3.65 anda, =
0.001,2.5,15.3.

All the L + M + 1 moments are then computed empirically
from which M Padé coefficientéa},, and{\} are derived in
1 order to perform PEOD.
= T (ay) ; (17)  variance resampling allows to deal directly with the datthwi

P P out statistical assumption on the clutter and PEOD perfor-
and thelV,. variance are so resampled according to : mances are shown below. PEOD expression stands even if the

—ap—1," 75>
T P e Thp

g9(7)
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Fig. 3. Comparison between 1€, ,b,) anda/x for smalla,, value @, =
10~3) and highb,, value 6, = 103).

characteristic functiorp(r) of the SIRV is theoritically un-
known like for Weibull clutter.
This is shown orfigure (6).

IV. SIMULATIONS

We compare the performances of the PEOD with those of = OO

OGD and OKD.

K-distributed clutter is generated with different valudstee
form parameter = 0.5, 20. Smaller is the value of and
spikier is the clutter. Inversely, whenis high, K-PDF tends

to a Gaussian distribution and this fact is confirmed through |

OGD and OKD performances digure (5).

Moreover, from PEOD expression, we can deduce OGD and _
Fig. 6. Performances comparison between the OGD, OKD andDPie©

OKD expression for particular variance PDF.

On figure (6)), we compare PEOD, OGD and OKD perfor-

mances (OKD with different values of) for an unknown tar-
get signal embedded in Weibull clutter.

K-distributed clutter - v=0.5 ; m=10 ; P,_=10"°
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Fig. 4. Performances comparison between the OGD, OKD andDPieD
K-distributed clutter ¢ = 0.5, Py, = 1073, m = 10 integrated pulses)

K~distributed clutter - v=20 ; m=10 ; P,_=10">
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Fig. 5. Performances comparison between the OGD, OKD andDPiBO

K-distributed clutter ¢ = 20, Py, = 10—3, m = 10 integrated pulses)

Weibull clutter — P, =10 - m=10

1
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0.7
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0.6

/ . OKD,
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a%05 / o,

0.4

10 15
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SNR input

an unknown target signal in Weibull-distributed clutter £ 0.2, b =
2; Pr, = 1073, m = 10 integrated pulses and = 0.1,0.5,2, 10
for OKD). SNR given on x-axis is for one pulse0:dB before coherent
post-integration corresponds 16 log 10(m) dB after the coherent pulse
integration.

V. CONCLUSIONS

The present paper has addressed the contribution of Padé ap-
proximation method to the problem of coherent radar dedacti
of a target embedded in a clutter with unknown statistice Th
simple expression of PEOD (Padé Estimated Optimum Detec-
tor) allows to build the optimum radar detector and to eviaua
its detection performances without having the knowledge of
the clutter statistic.

VI. OUTLOOKS : IMPROVING PEOD

At that time we are now able to give an improvement to
PEOD, that is to say, to avoid the Padé approximation step of
the variance PDF in estimating this PDF thanks to a bayesian
estimator from reference clutter cells and the same vagianc

prior density.



The resulting expression is called BORD (for Bayesian O

timum Radar Detector) and will be found in further papers.

Ra

BORD is "self-adaptative" to the clutter statistics beeaud®
of its only dependence of the data (references and observed
data). BORD performances reach OKD performances for K6l
distributed clutter and can apply for any clutter stats{isee
on figures (7) and (8)). The only hypothesis made at the begin-
ning of the study is the clutter SIRP modelization.

Clutter K;v=0.5; Pfa=1073 ; m=10 ; OKD-BORD-OGD
1 T T T T
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Fig. 7. Performances comparison between the OGD, OKD andB@R

K-distributed clutter ¢ = 0.5, Py, = 1073, m = 10 integrated pulses).

Clutter K ;v =20 ; P'a=1073, m=10 ; OKD-BORD-OGD
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Fig. 8. Performances comparison between the OGD, OKD andB@®R

(1
(2]

(3]

K-distributed clutter ¢ = 20, Py, = 10—3, m = 10 integrated pulses).
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