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Abstract

Enhancement of SAR resolution is essential for various applications in earth observation. Since SAR images are
highly corrupted by speckle noise, we propose to help super-resolution neural network learning with a despeckling pre-
processing step. Unlike optical images, low-resolution SAR images are extracted from the sub-apertures of the original
SAR image. To evaluate the impact of the despeckling, SwinIR, SRCNN, and ESPCN neural networks are trained in
three ways: Noisy2Noisy, Noisy2Denoised, and Denoised2Denoised. The ONERA SAR database experiments show the
despeckling improvement gap and the slight enhancement of SwinIR over SRCNN and ESPCN according to the visual
reconstruction and to L1, L2, PSNR, and SSIM metrics.

1 Introduction

Synthetic Aperture Radar (SAR) is a cutting-edge remote
sensing system that plays a significant role in earth ob-
servation and environmental monitoring. High-resolution
SAR imaging provides finer details in images, allowing for
detecting and identifying smaller objects and features on
the ground. However, the resolution of Side-Looking Air-
borne Radars (SLAR) is theoretically limited by the radar
bandwidth in slant range and the antenna footprint width in
azimuth [1] and practically degraded by targets sidelobes
[2].
To overcome these issues, the Spatial Variant Apodization
(SVA) algorithm and its variant aimed to reduce or cancel
sidelobes have been proposed in [2, 3, 4, 5]. These unsu-
pervised algorithms based on the impulse response model
are computationally fast and efficiently reduce the side-
lobes. However, the main lobe width remains unchanged.
The latter issue can be solved using supervised learning
approaches based on neural networks by leveraging prior
information from a database of paired High Resolution
(HR) and Low Resolution (LR) SAR images [6, 7, 8]. To
sharp mainlobes, neural networks have to learn to restore
HR SAR images from downsampled LR SAR inputs sim-
ilarly to the setup in the challenge on optical image super-
resolution [9].
However, SAR image formation is specific to radar waves
which differ from optic. Particularly, the SAR range and
azimuth axis are not permutable, and classical augmenta-
tions (e.g. rotation and flip) are unrealistic. Additionally,
the speckle noise highly corrupts SAR images making the
despeckling process decisive for target and anomaly detec-
tion [10]. Fortunately, SAR despeckling methods such as
[11, 12] are able to reduce the speckle noise with few Sin-
gle Look Complex (SLC) SAR images.
In this paper, we propose to evaluate the impact of the
despeckling process for SAR super-resolution using well-

known neural networks, namely Super-Resolution Con-
volutional Neural Network (SRCNN) [13], Efficient Sub-
Pixel Convolutional Neural network (ESPCN) [14] and
Shifted WINdows transformer Image Restoration neural
network (SwinIR) [15]. Unlike the previous study, the
LR SAR database is extracted from the subapertures of
the original (HR) SAR image using subband and sublook
processing [16, 17]. This process is enabled using the
complex-valued SLC SAR data to filter range and azimuth
spectrum. Additionally, we perform the MERLIN de-
speckling algorithm [11] to build a denoised SAR database.
We aim to evaluate whether the despeckling process can
help the above-mentioned neural networks enhance SAR
super-resolution. A quantitative evaluation is performed
using L1, L2 losses, PSNR and SSIM metrics.
The rest of the paper is organized as follows. Section 2 ex-
plains the neural network architectures and training setups
used for SAR super-resolution. Section 3 analyzes the net-
work performance over real SAR data acquired from ON-
ERA.

2 Methodology

2.1 Neural networks architecture
To better understand the approach, there is a brief explana-
tion of the three super-resolution networks used. Then, the
adaptation for the SAR image is explained.

Super-resolution convolutional neural network
The SRCNN [13] is one of the earliest deep-learning net-
works used for such a task. It consists of an upsampling
with a bicubic interpolation, followed by three convolu-
tions. This network is very shallow, which makes the
super-resolution capacity limited. Yet it achieved state-of-
the-art restoration quality when it was published.
The SRCNN architecture for SAR experiments is the fol-



lowing. LR SAR input is first upsampled using nearest-
neighbor interpolation followed by 3 convolutional layers.
The feature extraction layer is performed by a 9 × 9 ker-
nel and 64 output channels, followed by a ReLu activa-
tion function. The non-linear-mapping layer is a 5× 5 ker-
nel and 32 output channels, followed by a ReLu activation
function. The output reconstruction layer is a 5 × 5 ker-
nel and 1 output channel. All the convolutional layers are
zero-padded to keep the output image size constant.

Efficient sub-pixel convolutional neural network
The main drawback of SRCNN is that the convolution
is done in a high-resolution space, which can be time-
consuming. The ESPCN [14] proved that the convolutions
can be done in the low-resolution space. This led to run
time improvement and also to better performances. The
first layers are standard convolution layers and the last one
is a sub-pixel convolution. This is like a normal convolu-
tion but the number of output channels will be r2C, r being
the resolution improvement coefficient and C the number
of channels. In this way, the upsampling method is defined
by the network, in opposition to SRCNN. To improve the
resolution of an image of shape (C,H,W ) to an image of
shape (C, rH, rW ) the last convolution layer will have the
shape (r2C,H,W ), the elements of this tensor will then
be unfolded to obtain the desired super-resolution image.
Since we experiment only on SAR data single channel
C = 1, the ESPCN architecture is the following. There
are 5 convolutional layers. The first two convolution lay-
ers have 32 output channels, the next two have 64 out-
put channels and the last one has r2 = 4 output channels
which leads to r = 2 the upsampling factor for each spa-
tial axis. The convolutional output of size (4, H,W ) is
then unfolded according to the process defined in [14] to
obtain the output HR image of size (1, 2H, 2W ). All the
convolutions are done with 3×3 kernels with zero padding,
followed by the ReLu activation function except for the last
convolution.

Swin transformer image restoration neural network
Recently, most of the state-of-the-art super-resolution
methods are based on transformers [18]. As we can see
in [9], the Swin transformer [15] is used. It introduces a
hierarchical architecture that utilizes a shifted windowing
scheme for the computation of representations. The goal
is to adapt the architecture of transformers (initially made
for NLP tasks) for vision applications. The local atten-
tion mechanism allows the computation of high-resolution
images at low-level space (each token is extracted from a
4 × 4 patch). This architecture has been adapted to image
restoration in [19] with the SwinIR network. The architec-
ture is decomposed in 3 steps :

• Shallow Feature Extraction: A standard 3 × 3 con-
volution to get high-level information

• Deep feature extraction: A combination of multiple
blocks, each combining multiple Swin Transformer
layers followed by a convolution. There is a residual
connection between each block.

Figure 1 Process to subsample a SAR image. It consists
of a crop in the Fourier domain.

• High quality image reconstruction : Shallow fea-
ture and deep feature are aggregated. They are sup-
posed to assess respectively for the input image’s low-
frequency and high-frequency information. Then, the
sub-pixel convolution defined in the previous model
is used to obtain the high-resolution output image.

The SwinIR architecture for SAR experiments is the fol-
lowing. All the convolutions are done with 3 × 3 kernels.
The shallow feature extraction convolution layer has 60
output channels. Then, the deep feature extraction is com-
posed of 3 Residual Swin Transformer Block, each com-
posed of 4 Swin Transformer Layer, which is a window-
based multi-head self-attention (W-MSA) and a multilayer
perceptron (MLP), each preceded by a layer normalization.
The W-MSA has a window size of 8 and is composed of 4
heads. The MLP got a depth of 2 with a hidden feature
ratio of 2. The convolution at the end of the feature extrac-
tion has 60 output channels. For the upsample, there is also
a convolution with 60 output channels followed by an ES-
PCN type upsample for the features, i.e. a convolution of
60× r2 = 240 output channels followed by a pixel shuffle
of ratio 2. After the upsample, there is a last convolution
with 1 output channel for the final reconstruction.
The architecture of the networks can be found in detail
in the repository https://github.com/muzmax/
SAR_super_resolution.git

2.2 SAR images preprocessing
The architectures described above are made for optics im-
ages. Because SAR images are different in many ways,
they have to be adapted to work efficiently. Notably, we
propose in the following to generate LR SAR images from
the sub-apertures of HR SAR data and then to despeckle
them to obtain a better Clutter to Noise Ratio (CNR).

LR-HR SAR images generation
Contrary to optical images, there is a possibility to ex-
tract sub-apertures of SAR images with lower resolution
as explained in [20, 16, 17]. SLC SAR data are complex-
valued images allowing the computation of range and

https://github.com/muzmax/SAR_super_resolution.git
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azimuth spectrum by applying 2D Fourier transform or
wavelet transform. The original SAR spectrum should be
first shifted to the center (notably, the Doppler centroid is
moved to zero azimuth frequency) as shown in Fig. 1. Then
we filter the spectral image in the center to obtain the de-
sired resolution without padding. The LR image is then
obtained by 2D inverse Fourier transform.

SAR despeckling
An important aspect of SAR images is the strong noise
called speckle [21]. This phenomenon occurs due to the
coherent summation of many backscatters in a single pixel,
causing constructive or destructive interference. This noise
complicates the task of super-resolution because when the
image is upsampled by a network, it tends to remove parts
of the speckle and replace it with artifacts (see Fig. 4). One
solution for this problem is proposed in [22] when a net-
work has to minimize the distance between its output z and
a set of observation (y1, ..., yn) with a L2 loss it will make
an average of all the observations to obtain the best result
such that

argmin
z

Ey

[
∥z− y∥22

]
= Ey[y] (1)

Even though super-resolution neural networks will de-
speckle a bit following the noise2noise principle [22], the
result won’t be good enough. This is why we proposed
in this article to incorporate speckle-free images in the
pipeline. The advantage of this approach is that the net-
work won’t have to learn how to remove the speckle of the
image (or to keep it identical depending on the objective) in
an unsupervised manner. To remove the speckle from our
images, the network Merlin [11] is used. It is a network
that uses an image’s real and imaginary parts as its input
and label. It is easy to train because no pair of images or
labels are needed, only SLC images. The model used for
this network is a standard U-net. The training phase is done
from scratch with the Adam optimizer on ONERA SETHI
dataset (see section 3.1) divided into 5264 patches of size
256× 256. A batch size of 30 is used with an initial learn-
ing rate of 10−3 that decreases by a factor of 10 after the
5th and 20th epochs for 30 epochs.

2.3 Training setup
The super-resolution network is trained in three different
manners to observe the improvement brought by despeck-
ling. The SAR input image is the LR SAR image down-
sampled from the high resolution SAR which is the objec-
tive/label image. The generation of LR SAR is mentioned
in section 2.2. We decide to despeckle or not the LR-HR
SAR images according to the following setups:

• Noisy2Noisy: Both the input and the label are images
with speckle. This baseline will help to see how other
methods are improving the performances.

• Noisy2Denoised: The input and the label are respec-
tively images with speckle and speckle-free images
denoised by MERLIN [11]. This method will check
if a network can learn how to make a super-resolution

Figure 2 Different training for super-resolution. Upper-
left: standard method. Upper-right: the label is the
speckle-free HR image. Bottom: Both the LR input and
the HR label are speckle-free images. SR, HR, and LR
stand respectively for Super Resolution, High Resolution,
and Low Resolution.

version of a SAR image and remove its speckle at the
same time.

• Denoised2Denoised: Both the input and the label are
speckle-free images denoised by MERLIN [11]. This
method will show how far the performance of the
super-resolution network can be if we have already
removed the speckle of the input image.

A summary of this training method is displayed in Fig. 2
After completing the training process for the despeck-
ling network, the three super-resolution architectures are
trained, each for the three different methods which makes
a total of 9 networks. All networks use the Huber loss [23]
in pair with the Adam optimizer. The data described above
is sliced in patches of size 512 × 512 for a total of 1316
patches that are separated into training and validation parts
(80% and 20% respectively) and grouped in a batch size of
2 during training. The initial learning rate is 10−3, which
decreases by a factor of 10 if the loss does not improve
more than 10−4 in 30 epochs. The training is done for 100
epochs.

3 Experiments

All the training methods described above will be tested
in the following experiences in the case of a 2× super-
resolution. To assess the networks’ performances, metrics
L1, L2, SSIM, and PSNR are used on a validation dataset.
L1 and L2 metrics are respectively the mean absolute error
and the mean square error (MSE) between original and re-
constructed HR images. PSNR is defined by 10 log10

L2

MSE



with L the dynamic range. And SSIM metric is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µz and σ2
z are respectively the empirical mean and

variance of image patch z of size 11×11, σxy the empirical
covariance between patches x and y, c1 = 0.012 and c2 =
0.032. The bicubic interpolation is added to have a baseline
of super-resolution methods.

3.1 Dataset
To make the experiments, airborne SAR data from the ON-
ERA instrument called SETHI [24] is used. It consists of
X-band high-resolution data (about 25cm in azimuth and
range) in Hh polarization. The image was acquired over
the Nimes-Garons airport area. Multiple types of scatter-
ers are present in the scene such as urban areas, agricultural
fields, or small woods. Finally, we have one 37400× 9230
pixels image. The full SLC SAR image is shown in Fig. 3.

3.2 Qualitative results
When the image is subsampled, the high frequency con-
tent is removed. The speckle contains much information in
this frequency range, because of this and its randomness,
it is complicated to retrieve its original aspect. As we can
see in Fig. 4 first row, the results of the Noisy2Noisy ex-
periments are not convincing. Some parts of the speckle
in the crops are replaced with a local averaging. With the
SwinIR, the result is more visually pleasing but still, there
is a clear difference compared to the high-resolution origi-
nal SAR image.
The experiment Noisy2Denoised is the most compli-
cated because the network has to learn to do a super-
resolution and a despeckling simultaneously. In addition,
the image of Fig. 4 makes the task difficult because there is
high-frequency information in the crop lanes. The convo-
lution networks SRCNN and ESPCN cannot retrieve
the denoised SAR image (Fig. 4 bottom row). The areas
that were not well restored in the last experiment are the
same that are not well restored in this case. Some parts
of the lines are replaced with a global average. It may be
because the receptive field of the convolution is too small
or because the networks are too shallow to understand the
complexity of the tasks. In comparison, the SwinIR net-
work achieved fairly good results. There are some restora-
tion difficulties in the same areas where the convolution
networks struggled, but it is largely less significant.
The final experiment Denoised2Denoised is the easiest
one. All networks give visually good results, and even
the bicubic interpolation can achieve good performance. It
highlights the fact that super-resolution for SAR images is
hard mainly because of the noise that corrupts the image.

3.3 Quantitative results
As we can see in Table 1, the transformer architecture
gives the best results for all cases and this was to be ex-
pected because SwinIR is a state-of-the-art network for

Noisy2Noisy
Loss Bicubic SRCNN ESPCN SwinIR
L1 0.6481 0.4952 0.4899 0.4810
L2 0.7441 0.4528 0.4446 0.4322

SSIM 0.1929 0.2934 0.3028 0.3224
PSNR 47.314 49.476 49.555 49.677

Noisy2Denoised
Loss Bicubic SRCNN ESPCN SwinIR
L1 - 0.2705 0.2408 0.1687
L2 - 0.1689 0.1428 0.0790

SSIM - 0.2897 0.3475 0.5465
PSNR - 55.607 56.622 59.591

Denoised2Denoised
Loss Bicubic SRCNN ESPCN SwinIR
L1 0.0509 0.0119 0.0124 0.0099
L2 0.0093 0.0005 0.0004 0.0003

SSIM 0.8830 0.9795 0.9815 0.9844
PSNR 69.061 81.751 81.893 83.301

Table 1 Quantitative evaluation of the training methods.

image restoration, and it also has a lot more parameters
than the convolution networks. For the same reasons that
are explained in the last subsection, the Noisy2Noisy
quantitative evaluation is not convincing. The difference
between the simplest convolution network SRCNN and
a huge transformer SwinIR is small. It shows that
the task in itself, which is estimating a high-resolution
speckle, is not feasible with this approach. Because
Noisy2Denoised is the most complicated approach, it is
useful to have a powerful network. This is why the dif-
ference between SwinIR and other methods is essential,
it goes along with the qualitative evaluation. Because the
Denoised2Denoised approach is fairly simple, all net-
works give good results. It shows that for this specific task,
a huge transformer such as SwinIR is too powerful for the
task.

4 Conclusion

In this paper, we evaluated the impact of the despeck-
ling process for SAR super-resolution tasks. We pro-
posed to generate the paired monochannel LR-HR SAR
images using the SAR sub-apertures approach. Addition-
ally, this database is despeckled to obtain better CNR that
eases the SAR super-resolution learning by neural net-
works. Three neural network architectures, SRCNN, ES-
PCNN, and SwinIR, have been proposed to learn SAR
super-resolution. Quantitative metrics are evaluated on the
ONERA database, highlighting the importance of the de-
speckling pre-processing. We also note that SwinIR has
a reasonable advantage over SRCNN and ESPCN. Further



Figure 3 SETHI SLC SAR Image. HH polarization. X-band. Range direction is on the vertical axis and the azimuth
direction is on the horizontal axis.
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Figure 4 Qualitative evaluation of the different super-resolution methods and networks.

experiments can be conducted for multichannel SAR im-
ages such as polarimetric, interferometric, or tomographic
SAR.
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