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PROBLEMS DESCRIPTION

DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES

To detect targets (characterized by a given

spectral signature p) - Regulation of False Alarm.

The hyperspectral data are positive as they represent radiance or reflectance.

In the adaptive detection framework, a mean vector and has to be included in the statistical model and
estimated jointly with the covariance matrix,

Some hyperspectral data are proven to be spatially hetereogeneous in intensity and/or cannot be only
characterized by Gaussian statistic.
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COMPLEX NORMAL DISTRIBUTION

COMPLEX WISHART DISTRIBUTION

and W are independently distributed;

~CN (u, %E) ;

QW ~ CW(N —1,3) is Wishart distributed with V — 1 degrees of freedom.

A m-dimensional vector x has a complex normal distribution, and if the probability density function exists, it is of

the form:
L m —1 Hv—1
fx(x) =m"" BT exp{—(x — p)" X7 (x - uy)\}-
covariance matrix mean vector
1 & . 1 &
The resulting Maximum Likelihood Estimates are : fLgy/ = N ; X; 2USOM = N ;(Xz — ) (x; — IAIJ)H

Let x1,...,xy be an IID N-sample, where x; ~ CN(p1, ). And let ¢ = ftspry and W = N Sgoas referred to as
the Wishart matrix. Thus, one has:

/ TARGET DETECTION SCHEMES - ANMF \

¢ Derived under Gaussian hypothesis,
¢ Itis invariant under scale change of the observation vector,
¢ Its false alarm is independent of the covariance matrix, CFAR-matrix.
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ADAPTIVE NORMALIZED MATCHED FILTER

Unknown covariance matrix and known mean vector
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Since the detector is homogeneous in terms of covariance matrix,
the factor N also disappears.

Threshold A\

PFAANMFs ;= (1 =NV""3F (N —m+1,N —m;N;)\)
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TARGET DETECTION SCHEMES - AMF

Q Derived under Gaussian hypothesis,
¢ It is the optimal linear filter in terms of

SNR maximization under Gaussian assumption,

¢ Its false alarm is independent of the covariance matrix, CFAR-matrix.

MATCHED FILTER

ADAPTIVE MATCHED FILTER

PFA-THRESHOLD RELATIONSHIP

Known covariance matrix and mean vector
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ADAPTIVE MATCHED FILTER
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Firstly remark that as we jointly estimate the mean and the covariance matrix we lose a degree of freedom.

Let us know consider the AMF replacing s by the Wishart matrix Wy_1 :

Threshold A

PFAAMFy , = 2F2 (

A\
N —m, N — 1; N; ————
m, m + 1; : N+1)

G ) ) 100 SRR RALL A S TN
— ~ - S
(V) p” Wy, (x— ) DR
A SN N - WS "\
AMFE,[J, HW—l s ‘\ A
(p N—1 p> - \\ \‘ A
L Y. b
: N 1 . N +1 —1 | LAY .
Since 1t ~CN (p,—X|,onehas x— i ~CN (0,——X | . o 10 || eeee MF Monte Carlo LAY
N N e, | = = = MEF theo. ‘_‘ \‘ \‘
: . : _ a [ enens p1 known, N=20 theo. 1y
This can be equivalently rewritten as : E | o, No20 MC v E Y
1 )
> S | e p known, N=10 theo. 1 ‘ \
y:\/N/(N‘i‘l)(X_M)NCN(OaE) 1072 | - - = known, N=10 MC ' i LI
: : H. - o unknown, N=20 theo. 1 %
When replacing it on the test we obtain: 11 unknown, N=20 MC b
ok r—1 9 : p unknown, N=10 theo. “ “ 1
A(N) N N + 1 |p WN—l Y| (N —+ 1) A(N_l) o unknown, N=10 MC “ 'l‘ ‘,_!
AMFZA:A: ~_ — AMFZA: 10_3 [ [T 11 [ T T 11 T N [ |l
e N (pH WNl_1 p) (N-1) 102 10-1 100 10!

\_
e

NG

ROBUST TARGET DETECTION - ANMF

In order to take into account heterogeneity and non-Gaussianity for background
modeling, the class of Elliptical Distribution Model 1s considered:

fx(x) =[] hy (x = )" 7 (x — )
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density generator

 Due toits invariance properties ANMF detector provide the best detection results in non-Gaussian environment,
 One has to introduce Robust Estimation procedures to achieve robustness in the detection scheme.

FIXED POINT ESTIMATORS
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/ CONCLUSIONS

 The AMF and the ANMF have been analyzed in the case where both the covariance
matrix and the mean vector are unknown and need to be estimated,

e Closed-form expressions for “PFA-threshold” relationships have been derived under
Gaussian assumptions,

e Additionally, Kelly detector has been studied for non-zero mean Gaussian distribution
but non-closed form for “PFA-threshold” relationship can be obtained,

* In Elliptical distributions framework, the joint robust location and scale estimators have

been proposed and they provide better false-alarm regulation and an improvement for
detection in heterogeneous and/or non-Gaussian background.
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