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Motivations

Motivations

Let us considering the following binary hypotheses test:

Hy:y=c, yi=c;,, i=1...,N
Hi:y=ap+c yi=c, i=1...,N’

where c is an additive noise, {c;}jc(1,n are N signal-free secondary data, p a
known steering vector and where « is the unknown amplitude of the target.

In partially homogeneous Gaussian environment (i.e. {ci}ici1,n ~ CN(0p, M),
¢ ~CN(0,,,02M)) when M is known and 02 unknown, the GLRT is the well
known Normalized Matched Filter [L. Scharf]:

lp"M1y[?

HM) = (p"M~1p)(y"M~1y)"
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_ 1Y
When an estimate Mgcy = NZ Ck cf of M is plugged into the NMF (two-step

k=1
GLRT), this results in the so-called ANMF [S. Kraut] whose distribution is given
by:

F(N+1)e? Jl (I—w)™t(@—x)Vm

N—m+1
TN—m+1)T(m—1) J (1— ux)N-m+2

Ox(1—u)
xX1FR {N—m+2,1;,—— | du.

Pr(Nisem) (x) =

(1)

1—xu
Performances of the NMF and ANMF can be easilly described in terms of:
e Probability of False Alarm P, versus the detection threshold A (& = 0),

e Probability of Detection P, versus the SNR & = «? p"M~! p/0o?.
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Motivations

Under more severe environment (spikyness, heterogeneity of the background, outliers in
secondary data, ...), the performance of ANMF is dramatically degraded. The noise ¢
and secondary data {c;};c1,a cannot be described by conventional Gaussian PDF:

e need to characterize the environment statistics using more general models:
Spherically Invariant Random Vectors (SIRV) or Complex Elliptically Symmetric
(CES) distributions

e need to propose robust estimators of the background parameters (e.g. covariance
matrix): M-estimators

The goal of this paper is to derive under both Ho and H: hypotheses the asymptotic
distributions (N not too small) of the robust ANMF built with any M-estimator M

when the noise and secondary data are modelled by Complex Elliptically Symmetric

(CES) distributions:

- 2
Py
(pH M-1 pH) (yH M-1 y) ’

Jean-Philippe Ovarlez Asymptotic Detection Performance of the Robust ANMF

H(M) =




CES distributions and M-estimators CES distributions
M-estimators

Outline

CES distributions and M-estimators
m CES distributions

6/28

Jean-Philippe Ovarlez Asymptotic Detection Performance of the Robust ANMF



CES distributions and M-estimators CES distributions
M-estimators

Modeling the Background

Let ¢ be a complex circular random vector of length m. ¢ has a complex
elliptically symmetric (CES) distribution (CE(u, M, hp,)) if its PDF is

gel(c) = IMI™ i (e — WP M (e —m),

where hp, : [0,00) — [0, 00) is the density generator.
m [ is the statistical mean (generally known or = 0)
m M the scatter matrix

In general (finite second-order moment), M is equal to the covariance
matrix E[(c — p) (c — )] up to a scalar factor.

7/28

Jean-Philippe Ovarlez Asymptotic Detection Performance of the Robust ANMF



CES distributions and M-estimators CES distributions
M-estimators

Attractive clutter modeling

Some important properties

m Large class of distributions: Gaussian, SIRV, MGGD, K-dist.,
Student-t....

m Closed under affine transformations,

m All sub-vectors of z have a CES distribution,

m CES stochastic representation theorem: ¢ =4 u + T A u where the
random scalar texture T > 0 is independent of u (m-vector uniformly
distributed on the sphere) and characterized by its PDF p.(.) and
where M = A A,

m SIRV subclass stochastic representation theorem: ¢ =4 u + Tu where
the random scalar texture T > 0 is independent of u ~ CN(0,,, M)
and characterized by its PDF p.(.).
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CES distributions and M-estimators CES distributions

M-estimators

Estimating the covariance matrix

Let (c1,...,cn) be a N-sample ~ CES(0,,, M, hp,) (Secondary data).

Maronna (1976), Kent and Tyler (1991)

m Existence

m Uniqueness
m Convergence of the recursive algorithm...
PDF specified = MLE can be derived: u(x) = —h,/,,(x)/hm(x)

PDF not specified = general M-estimators are used instead
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Some remarks on the M-estimators

FPE and SCM are “not” (theoretically) M-estimators
FPE is the most robust

N
iﬁ m C;Cﬁ
FPE = — —_—
N Hng=l .
i—1 € Mpgpec

m The FPE does not depend on the texture (SIRV or CES distributions)
m Existence, Uniqueness, Convergence of the recursive algorithm...
m True MLE under SIRV noise with unknown deterministic texture

{Ti}ie[l,NJ
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CES distributions and M-estimators CES distributions

M-estimators

Asymptotic distribution of complex M-estimators

Using the results of Tyler, we derived the following results [Ollila, Mahot,
2013]:

VN vec(M — M) %5 CN (0,2, C, P),

where the covariance matrix C and the pseudo covariance matrix P are
given by:
C =vi(M* ® M) + v, vec(M) vec(M)#,
P=vi(M*®M)K + v, vec(M) vec(M) T,

where K is the commutation matrix and where the constant vy and v, are
completely defined.

v
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CES distributions and M-estimators CES distributions
M-estimators

Asymptotic distribution of a function of complex
M-estimators

m Let H(V) be a r-multivariate function on the set of Hermitian positive-definite
matrices, with continuous first partial derivatives and such as H(V) = H(«V) for
all o« > 0, e.g. the ANMF statistic, the MUSIC statistic.

VN (H(ﬁ) _ H(M)> 4, CN(0,,Ch, Ph)

where Cy and Py are defined as

Cu=viH' (M) (M’ @ M)H'(M)",
Py=viH'M)M" @ M)KmnH (M),

, OH(M)
where H (M) = <a\/e(:(1\/”>
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CES distributions and M-estimators CES distributions
M-estimators

Two important properties of complex M-estimators

e SCM and M-estimators share the same asymptotic distribution
e H(SCM) and H(M-estimators) share the same asymptotic distribution
(differs from v1)

SCM M-estimators | FP
V1 1 Vi (m+1)/m
Vo 0 Vo —(m+1)/m?

This important result shows that asymptotically and under Gaussian
environment:
m any M-estimator built with N observations behaves like the SCM but
with a slight smaller degree of freedom N/vq,
m any function H built with M-estimator behaves like those built with
SCM but with a slight smaller degree of freedom N/v;. 1428
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Key ideas

eedom of the M-estimator
distribution of the robust ANMF

— — pH My H
H(M) = Aanmr(y, M) = e — 2 A

where M stands for any M-estimators.

m The ANMF is scale-invariant (homogeneous of degree 0), i.e.

Vo, B € R, Aawwr(oy, B M) = Aawwie (y, M) )

m The ANMF test is CFAR w.r.t the covariance/scatter matrix M,
m The ANMF test is CFAR w.r.t the texture (SIRV or CES distributions)

16/28

Jean-Philippe Ovarlez Asymptotic Detection Performance of the Robust ANMF



Key ideas
eedom of the M-estimator

Performance Analysis of the Robust ANMF distribution of the robust ANMF

Two different ways to derive robust ANMF asymptotic
performance

e by correcting the degree of freedom of the M-estimator (N — N/v1)

in PH (M scn) presented in (1) and by conditioning on the texture PDF,

e by exploiting directly the asymptotic distribution of the ANMF
[Pascal -Ovarlez 2015]:

H(M) - cN (H(M), o
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Key ideas

dom of the
symptotic distribution of tk

mator

robust ANMF

log, MSE
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C)B\\ E[(II (Mscn) - H ) }
RN = X--2 H(M) (H(M) — 1)2/N
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R | @ 5[ mer) - wow)’]
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Number of secondary data N

Empirical variance of the ANMF built with the SCM (v; = 1) and Tyler's
M-estimator (vy = (m+ 1)/m) in Gaussian environment and theoretical
asymptotic variance for m =3 and M =1Is.
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Performance Analysis of the Robust ANMF Exploiting the mptotic distribution of the robust ANMF

Outline

Performance Analysis of the Robust ANMF

m Correcting the degree of freedom of the M-estimator
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the degree of freedom of the M-estimator

Performance Analysis of the Robust ANMF Exploiting the asymptotic distribution of the robust ANMF

Correcting the degree of freedom of the M-estimator

Evaluation of the performance for a cell under test containing SIRV noise and for
any CES secondary data.

Po=P(HOM) = NHy),  Pa=P(H(M) 2 M)

Pp = (1—A)V/Y=m+ L F (N/vi—m—+2,N/vi —m+1;N/vi + 1;A)

+o0 1 A (1 _ u)mfl (1 _ X)N/V1*m
1 N/vi—m+1 -5/
Py=1 J dTJ duJ ut (1 — ux)N/vi—m+2 e "

0 0 0
F(N/V1—|—]_) §x(1—u)
Xr(N/vl—m+1)r(m71)1F1 N/Vl_m+2,1,;m pT(T)dX

v
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Performance Analysis of the Robust ANMF
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Performance Analysis of the Robust ANMF

m Exploiting the asymptotic distribution of the robust ANMF
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Performance Analysis of the Robust ANMF Exploltmg’vthe asymptotlc distribution of the robust ANMF

Exploiting the asymptotic distribution of the robust ANMF

Vi

H(M) -% CN (H(M), 2 57 HOMD) (H(M) — 1)2>

The distribution of H(A) is conditioned to the distribution pynp) of H(M):

e the cell under test contains Gaussian noise:
prov (1) = e ° Brm_1(u) 1F1 (myL;ud).

m the cell under test contains SIRV noise:

ud
PH(M)(U) = J e /7 Bi,m-1(u)1F (m, 1 T) p(T) dT.

0

m the cell under test contains general CES noise: No closed-form under Hj.

The same as SIRV noise under Hg.
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Exploiting the asymptotic distribution of the robust ANMF

Evaluation of the performance for a cell under test containing Gaussian noise and
for any CES secondary data.

Pa=P(H(M) 2 NHy),  Pa=P(H(M) 2 AH)

Pe=1— Jl B1,m—1(x) ® <\M_X)> dx.

0 2vix (x —1)2

1 J—
Pd =1l 7J‘0 Bl,m—l(X) eé (=) 1F1 (1 —m, 1,*X 6) () <\/N(>\X)> dX

2vy x (x —1)2

where @(.) is the cumulative distribution of the Normal distribution.

v
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om of the M-estimator

Performance Analysis of the Robust ANMF Exploiting the asymptotic distribution of the robust ANMF

Ex: K-distributed secondary data and Gaussian noise in the cell under test.

ANMF Probabiliy of Detection - N = 500, m = 10, P, = 0.001
1 - : : : : <
0 GausmannhF /

osf | / ]

Second Asymplotcform /
o8l 4

Monte Carlo
o7} / 4
osf / 4
<ost J 4
o4l / 4
/ |
oz} 4
o1} 4
o0t
R T s 10 15 20 25
1010g10(6)

Comparison between Py and SNR 6 relationships for the ANMF built with Tyler's
estimator, m =10, N =500 and P, =103, p=11,...,1]7, {y,—},e[l’N] ~ Ky where Ky
is a K-distribution with shape v = 0.1. and y ~ CA/(ap, M) where M = (p“ﬂ")_ “with

)
p=0.5
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Correcting the degree of freedom of the M-estimator

Performance Analysis of the Robust ANMF Exploiting the asymptotic distribution of the robust ANMF

Exploiting the asymptotic distribution of the robust ANMF

Evaluation of the performance for a cell under test containing SIRV noise with
texture ~ p.(.) and for any CES secondary data.

Po=P(HOM) = NHy),  Pa=P(H(M) 2 M)

1 _
P =1— J B1,m—1(x) D <\MX)> dx

0 2vy x(x—1)2

0o 1 5
Pg = 1—J pe(T) er Bim1(x)e® /TR (1—m, 1;—x T)
0

0
«® <W> e

2vix (x —1)2

where @(.) is the cumulative distribution of the Normal distribution.
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Performance Analysis of the Robust ANMF Exploiting the asymptotic distribution of the robust ANMF

ANMF Probability of Detection - N = 500, m = 10, Py = 0.001, v=0.5 ANME Probability of Detection - N = 50, m — 10, Pra — 0.001, v—0.5

o KNME
—+— FirstAsymptotic form

o KNMF
—— First Asymptotic form
Second Asymploticform ‘Second Asymptotc orm

O | somect i 081 | o Mowte-Carlo

5 E o 5
1010g1n(6 1010g10(3)

N =500 N =50

Comparison between Py and SNR & relationships for the NMF, the ANMF built with
Tyler's estimator and its asymptotic form, m = 10, v; = 1.1 and P = 1073,
p=11,...,1]7, y = ap + c where ¢ ~ K, where K, is a multivariate K-distribution
with shape parameter v = 0.5 and covariance matrix M = (p"’j‘)_ ~with p =0.5.
Ly
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Conclusions

Conclusions

Two asymptotic approximations of the corresponding robust ANMF
distribution have been derived following different approaches:
e First asymptotic distribution is based on the correction of the degrees
of freedom of M-estimators
e Second asymptotic distribution is based on the direct exploitation of
the asymptotic distribution of the ANMF

These results provide a very good approximation of the robust ANMF
distribution in CES environment even for a small number of observations
and have been applied to theoretically regulate the false alarm probability
and to evaluate the detection performance.
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