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Introduction and Motivations

Let us consider a hyperspectral image of Gaussian independent and identically distributed data, N spatial dimension and m spectral dimension

GOAL: Detecting and Estimating the number of anomalies on a Hyperspectral Image

e Large number of data: N and m are of same order Statistical Model :
with possibly N > m e Detect K independent anomalies among N observations x For the others:
X, iIndependent gaussian noise vectors yi = X; ~ CN(0,M)
= If (N;m) — o0 y,; observation vectors
Then Law of Large Number not valid anymore * For the K" =) K observations with anomalies:
K;
y,; = Z j—]m pj +x;, ~ CN (\?—Jm D, M) Hyperspectiaélbié?:fsﬂ[e)ss.() National

j=1
Contribution : Using techniques of random matrix theory for hyperspectral images.

White Gaussian Noise

N
e Sample Covariance Matrix (SCM): M = 1= Z yiyi
n=1

e Noise Sample Available (Anomaly free)
x Whiten the signal

e SCM : Distribution of the eigenvalues — Marchenko-Pastur Law * Same Test, by and oy different

Marchenko—Pastur Distribution

e No Noise Sample Available

008 + Find a gap between distance of two consecutive eigenvalues |2]
§222 _ [A(N = argmaxyefi, . -1} (A;“\ZVN > 1+ threshold)
™ - with L > K and A\_; = +00 |
" Ggewaes
4 )
Theorem : [1] Wy € C™" with independent identically distributed
If N,m — oo, x € compact set, \jy :maXSpectre(%WNWﬁ)
Then
Ao.ny — by
P m?’ o > | = Frw(z), e (Gaussian noise anomaly free sample avail- e No non-gaussian noise sample available
Fryy Tracy-Widom distribution able * PFA-threshold relationship obtained with
ey =m/N <1, by = (1+ yex)’s oy = (1+ @) ey’ SNR [44 45 46 464 47 simulated data
| ) Koo 10 12 31 4 4 = Choice of the threshold
e Hypothesis Test [2] Var 0 0.16 0.16 0 O
. Kagre |10 0 2 29 4 e Real image with a car to detect
H, : at most k anomalies
H : at least k anomalies First eigenvalues ratios
( h e pEA With car |37 3.4 43 3.6 1.1 2.0
5\ }>]1 % o - o . B \ 3 f f . f 5 without car |16 3.1 4.3 3.3 1.3 2.0
NS 10 () | by A m2/3( wl—a)) | =Cvo L | csmaescwmwo | Threshold = 34.7 = Car detected .
\ / 3 | ——Kreal |
Ky = argming (Ay < () = 1 = _
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Conclusion
e Classical methods for anomaly detection — not adapted for large m and N 1] R. Couillet and M.bDebbah Random Matrix Methods for Wireless Communication, Cambridge University
e Monte-Carlo simulations — illustrates improvement of this methods compared to AIC and Fress, 2011 . . . L .
2] J. Vinogradova Random matrices and applications to detection and estimation in array processing, PhD
MDL. thesis, Telecom ParisTech Paris, 2014

e Further works will address the problem of correlated and non-Gaussian noise.
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