Anomaly Detection and Estimation in Hyperspectral Imaging using Random Matrix Theory tools

Eugenie Terreaux ¹ Frederic Pascal ² Jean-Philippe Ovarlez ¹

¹ SONDRA/Suplec, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France ² LSS, CNRS, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France

Introduction and Motivations

Let us consider a hyperspectral image of Gaussian independent and identically distributed data, N spatial dimension and m spectral dimension

GOAL: Detecting and Estimating the number of anomalies on a Hyperspectral Image

ullet Large number of data: N and m are of same order

with possibly N > m

 $\Rightarrow \text{If } (N,m) \to \infty$

Then Law of Large Number not valid anymore

Statistical Model:

- ullet Detect K independent anomalies among N observations
- \mathbf{x}_i independent gaussian noise vectors
- \mathbf{y}_i observation vectors
- * For the $K' = \sum K_i$ observations with anomalies:

$$\mathbf{y}_i = \sum_{j=1}^{K_i} \frac{\alpha_j}{\sqrt{m}} \mathbf{p}_{j} + \mathbf{x}_i \sim \mathcal{CN}\left(\frac{\alpha_j}{\sqrt{m}} \mathbf{p}, \mathbf{M}\right)$$

Contribution: Using techniques of random matrix theory for hyperspectral images.

Example

Hyperspectral image DSO National Laboratories.

White Gaussian Noise

- Sample Covariance Matrix (SCM): $\hat{\mathbf{M}} = \frac{1}{N-1} \sum \mathbf{y}_i \mathbf{y}_i^H$
- \bullet SCM : Distribution of the eigenvalues \to **Marchenko-Pastur** Law

Theorem: [1] $W_N \in \mathbb{C}^{m \times N}$ with independent identically distributed entries | mean=0 | variance=1

If $N, m \to \infty$, $x \in \text{compact set}$, $\lambda_{0,N} = \text{maxSpectre}(\frac{1}{N} \mathbf{W}_N \mathbf{W}_N^H)$

Then

$$\mathbb{P}\left(m^{2/3}\frac{\lambda_{0,N}-b_N}{\sigma_N}\geq x\right)\to F_{TW}(x),$$

 F_{TW} Tracy-Widom distribution

$$c_N = m/N < 1, \ b_N = (1 + \sqrt{c_N})^2, \ \sigma_N = (1 + \sqrt{c_N}) \ c_N^{4/3}$$

• Hypothesis Test [2]

 H_0 : at most k anomalies H_1 : at least k anomalies

$$\hat{\lambda}_{k,N} \underset{H_0}{\overset{H_1}{\gtrless}} \left\{ \hat{\sigma}^2(k) \left(b_N + \frac{\sigma_N}{m^{2/3}} \left(F_{TW}^{-1} (1 - \alpha) \right) \right) = \zeta_N \right\}$$

$$\hat{K}_N = \operatorname{argmin}_k \left(\hat{\lambda}_{k,N} < \zeta_N \right) - 1.$$

Correlated Gaussian Noise

- Noise Sample Available (Anomaly free)
- * Whiten the signal
- * Same Test, b_N and σ_N different
- No Noise Sample Available
- * Find a gap between distance of two consecutive eigenvalues [2]

* For the others:

 $\mathbf{y}_i = \mathbf{x}_i \sim \mathcal{CN}(\mathbf{0}, \mathbf{M})$

$$\hat{K}_N = \operatorname{argmax}_{k \in \{1, \dots, L-1\}} \left(\frac{\hat{\lambda}_{k-1,N}}{\hat{\lambda}_{k,N}} > 1 + \operatorname{threshold} \right)$$
 with L \geqslant K and $\lambda_{-1} = +\infty$

Experimental Results

• Gaussian noise anomaly free sample available

SNR	44	45	46	46.4	47
$\hat{K}_{estimean}$	0	1.2	3.1	4	4
Var	0	0.16	0.16	0	0
\hat{K}_{AIC}	0	0	2	2.9	4

- No non-gaussian noise sample available
- * PFA-threshold relationship obtained with simulated data
- \Rightarrow Choice of the threshold
- Real image with a car to detect

	First eigenvalues ratios							
	with car	37 3.4 4.3	3 3.6 1.1	2.0				
	without car	16 3.1 4.3	3 3.3 1.3	2.0				
T	hreshold =	$34.7 \Rightarrow 0$	Car dete	ected.				
. –								

Estimated K versus PFA

Conclusion

- Classical methods for anomaly detection \rightarrow not adapted for large m and N
- Monte-Carlo simulations → illustrates improvement of this methods compared to AIC and MDL.
- Further works will address the problem of correlated and non-Gaussian noise.
- [1] R. Couillet and M.bDebbah Random Matrix Methods for Wireless Communication, Cambridge University Press, 2011
- [2] J. Vinogradova Random matrices and applications to detection and estimation in array processing, PhD thesis, Telecom ParisTech Paris, 2014

