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ABSTRACT 
This work concerns an extension of usual radar imaging in which t h e  
pictures of the target do not simply exhibit the position of elementary 
reflectors but also give the behavior of these reflectors when the 
frequency and the direction of illumination vary. Essentially, the 
technique consists of describing the target by a generalized image 
which can be computed from the knowledge of the backscattering 
function on a large domain in the angle-frequency space. A discus- 
sion of the physical relevance of the approach is given and its 
conclusions are used to derive a practical formulation relying on a 
special wavelet transform. The implementation of the technique is 
developed by using the fast Mellin transform. Special features of the 
method are the use of data in polar format without resampling and 
the fact that the computation can be easily parallelized. @ 1994 John 
Wiley 8 Sons, Inc. 

1. INTRODUCTION 
Radar imaging is a special technique of microwave imaging in 
which the computed pictures correspond to maps of elemen- 
tary reflectors [l]. It works by processing scattering data 
collected by a coherent radar system. The basic assumption of 
the operation is that the contribution of multiple reflections 
on  the target can be neglected. 

The problem addressed here concerns operations of mono- 
static type which are confined to the laboratory and the 
anechoic chamber. The observed targets are finite objects 
whose backscattering coefficients can effectively be measured 
for various frequencies and directions of observation. The 
object of the imaging operation is then to extract information 
on  the location of the main reflecting parts of these targets. 

In practice, the question of the vectorial nature of the 
electromagnetic field cannot be avoided and it will be solved 
by fixing the polarizations of the emitting and receiving 
antennas. Such an experimental procedure is unambiguous as  
long as the changes in the direction of illumination correspond 
to  a rotation of the target around an axis perpendicular to the 
radar line of sight. In that case, the data collected are samples 
of a complex-valued function depending on the emitted fre- 
quency f and on the target orientation 0. For convenience, this 
function will be  noted H(k), where k is a two-dimensional 
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vector corresponding to the point of polar coordinates (2f/ 
c ,  e ) ,  c being the velocity of light. It can be noted that any 
imaging operation working with the above set of data will 
permit one only to localize the projections of the bright points 
on the measurement plane. 

In classical radar imaging the backscattering coefficient 
H(k) is supposed to be acquired on some frequency band 
(f,,,,,, f,,,) and on some angular sector (Om,,, Om,,) and the 
image is obtained either by a range-Doppler analysis [2] or by 
a bidimensional Fourier transform [3]. The two classical pro- 
cedures provide useful results but they both introduce compu- 
tational difficulties due to the fact that their algorithms cannot 
work efficiently with data collected in polar format. 

Great progress in the experimental techniques has permit- 
ted the coherent measurement of the backscattering coeffi- 
cient over wide frequency bands (for example, from 2 to 
18 Ghz or  more) and this for all values of angle. As a result, 
many images of the same target can be computed by process- 
ing the samples contained in various windows corresponding 
to subsectors and subbands of the observation domain. Such 
images are  naturally labeled by the mean frequency and the 
mean orientation of the target and their study displays the 
evolution of the bright points in a change of the scattering 
parameters. The systematic exploitation of this possibility is 
what we call a frequency-directivity scanning operation. 

Actually, laboratory radar imaging procedures can be re- 
formulated by introducing from the start the concept of 
spectral image which consists of describing the target by a 
distribution R(x,  k) of bright points located in x and reflecting 
in the direction of k for the frequency clk1/2. In this ap- 
proach, the whole set of classical images corresponding to 
various k is treated as a unique hyperimage in four-dimension- 
a1 space (x, k). The operation is licit provided some con- 
sistency constraint is verified in order to  ensure the physical 
relevance of the description. Basically, the essential require- 
ment is that different observers, using different reference 
frames and different measuring scales in the laboratory, be 
able to compare their results, i.e., the spectral images they 
have formed. Since reference systems are connected by trans- 
lations, rotations, and scalings, the fundamental role in the 
analytical formulation of the constraint is played by the 
similarity group of the plane which consists exactly of these 
transformations. The object of the following developments is 
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t o  show how the above remarks can be exploited to derive a 
practical expression of the spectral image. 

In Sec. I1 the definition of the backscattering coefficient 
H(k) is recalled and its transformation in a change of refer- 
ence frame is derived. The fundamental constraint of co- 
variance is then written as a relation between the transforma- 
tion rules which apply to  the backscattering coefficient and to  
the spectral image respectively. These preliminaries are used 
in Sec. 111 to  express the spectral image R(x, k) in terms of a 
continuous wavelet transform of the backscattering function 
H(k). This approach is completed in Sec. IV by an original 
computational technique which is essentially founded on the 
use of a Mellin transform which respect to  the frequency 
variable. The algorithm works directly on samples in polar 
format and, if needed, its structure could be easily parallel- 
ized. Finally, practical applications are presented in Sec. V. 
These applications deal with numerical simulations and some 
examples of results obtained with a real target. 

II. ANALYTICAL FRAME 
A. Radar Backscattering Coefficient. Despite its familiari- 
ty, the notion of the backscattering coefficient is essentially a 
theoretical one and its experimental characterization deserves 
great attention. However, as long as we are only concerned 
with the imaging technique, it is sufficient to  recall the formal 
aspect of the subject and to  suppose that all useful data can be 
acquired in the laboratory. As specified in the Introduction, 
we will only consider planar measurements in which the 
values of the backscattering coefficients are obtained by rotat- 
ing the target around some axis perpendicular to  the radar 
line of sight. 

Suppose that the radar is at distance D from a point 0 
chosen on the target or in its vicinity and that the impinging 
field E ,  is a plane wave whose wave vector points in the 
direction of 0. If the observation distance D is much greater 
than the size of the target, the scattered field E,5 received by 
the radar has approximately the form of a spherical wave 
issued from 0. Moreover, for a static target, this field is 
reradiated without change of frequency. At this point a 
simplification occurs when the polarizations of the emitting 
and receiving antennas are fixed. In this case, the observable 
effect of the target is simply described by the ratio E,sIE, of 
two complex numbers representing the values of the incoming 
and outgoing fields a t  the radar. This leads to a definition of 
the radar backscattering coefficient through a limit operation: 

In this formula, the variable 8 specifies the direction of 
observation in the measurement plane and c is the velocity of 
light. The explicit form of (1) supposes that the time depen- 
dence of the fields is of the form eZi? When the measure- 
ment radius D increases, the modulus of E,IE, goes to zero 
while its phase grows without limit. This observation explains 
the introduction of D-dependent corrective factors in (1) in 
order that a finite limit be obtained. In particular, the ex- 
ponential factor e4iTfD'c ensures that the argument of the limit 
corresponds t o  the phase that the ratio E J E ,  would have at 
the center of measurement 0. As a result the backscattering 
coefficient (1) is not only representative of the target but also 

of the choice of the point 0, which is called "origin of 
phases." In an actual experiment, this point is in fact de- 
termined by the calibration process. 

In the following, the two variables of the backscattering 
coefficient will be described by a vector k with polar com- 
ponents k = 2flc and 8. With this notation, the effect of a 
translation 00' of the origin of the phases is expressed by 

H(k)-+ H'(k) = H(k)e-2'"k'oo' . ( 2 )  

B. Spectral Image and Similarity Group. The complex 
function introduced by the mathematical definition (1) com- 
pletely characterizes the scattering process in a monostatic 
radar experiment involving specific polarizations. This func- 
tion does not have a direct physical interpretation but it can 
be used to build real-valued expressions of practical interest. 
A very common example of this fact is given by the radar 
cross section which is of the form 

cT(k) = IH(k)l'. (3) 

This quantity is insensitive to  a displacement of the origin of 
phases [cf. (2)] and is considered as the main scattering 
characteristic in quantum physics (and in classical optics) 
where the phase of the backscattering coefficient is generally 
unknown. In the radar context, it gives information on the 
frequency-directivity of the reflecting parts of the target but 
nothing on their positions. 

In modern radar experiments, the whole measurement of 
(1) is possible and this fact supports the idea of seeking 
alternative descriptions that give information not only on the 
frequency-directivity k of the bright points but also on their 
position x. Analytically this suggests to  generalize (3) by a 
relation such as 

where R represents a spectral image of the target and where 
the kernel K is supposed to be Hermitian. 

In fact, the form of the kernel can be specified by using 
some more physical arguments relative to  the interpretation of 
the image we are seeking. The essential constraint is the 
invariance of relation (4) by a change of observer, i.e., by a 
change of reference system. 

According to  the experimental situation, a change of refer- 
ence system is essentially a change of origin, axis orientation, 
and scale of length in the plane of measurements. However, 
for a complete description of the operation, two tacit agree- 
ments between observers have to be  added. The first one is 
that any change of length scale be accompanied by a propor- 
tional change of time scale so that the value of the velocity of 
light is conserved. The second one concerns the experimental 
practice and consists in admitting that the origin of phases 
coincides for each observer with the origin of coordinates. 

The coordinates (x, t )  and (x', t ' )  of a point for two 
different observers are related in the following way: 

t-, t' = a t ,  
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where the two-vector b characterizes the change of origin of 
the reference system, 92+ its rotation by angle 4 and a > 0 the 
dilation in length and time. The coordinates k are transformed 

In a similarity transformation (a, %+, b) point Po goes into a 
point P whose coordinates are given by 

accordingly as x = b ,  k = ( k , O ) = ( a - ' , d ) .  (12) 

k+ k' = a-'92*k (6) Simultaneously wavelet @ is transformed according to  (7) 
and, due t o  relation (12), is seen to be attached to  point P. Its 
explicit expression is since frequency transforms as the inverse of time. 

Recalling the definition of the backscattering coefficient 
H(k) and using the agreement between observers on the 
choice of the origin of phases. we are able to .write the (13) QXk(k') = k~'e~ '" '* '~"@(  % k' , 0' - 0) . - 
transformation law of H in a change of reference systems 
defined by (5) and (6): The family of wavelets thus obtained for all similarity trans- 

formations constitutes a set of basis functions that will be the 

H(k)+ H'(k) = ae-2'"k'bH(a%~'k).  (7) 

The a factor in front is there t o  ensure that H transforms as a 
length in a dilation as it should since lH12 is a cross section. 
The usual inner product on functions H is given by 

same in all reference frames. Indeed, because of the group 
property, a change of observer will simply be expressed by a 
change in the labeling Of 

The wavelet coefficient C(x, k) associated with H i s  defined 
as usual by the scalar product of H and the wavelet 

(13). 

or according to  (8) 

C(X, k) = I do' 1 dk' 

and is easily seen to be invariant under transformation (7). As 

two-dimensional case. In problems with a different number of 
dimensions, the scalar product invariant by the transformation 
(7) of H will not be the usual one: an adequate power of k 
will appear as a weight in the integration [4]. 

In a change of reference frame, distribution R(x, k) is 
required to  transform pointwise as a dimensionless quantity: 

R(x, k)+ R'(x, k) = R(a-'%-,(x - b), a%-,k). (9) 

k' k' 
H(k', @')e2'"*"'@*( 

a matter of fact, this property is a special feature of the 2 7  

, 0' - 0) . 
(15) 

The squared modulus of C integrated over the whole (x, k) 
space is given by 

1 R ' X R ~  IC(x, k)I2 dx d k = /  H(k')H*(k")eZr"(k'-k''''x 

In this way, the integral 

on some domain 9 of the measurement plane has the dimen- 
sion of a surface and can in fact be interpreted as that part of 
the scattering cross section due to the elements of the target 
with projections in 9. 

Constraints considered so far are not sufficient to  de- 
termine R(x, k) uniquely. The solution that will be studied 
relies on a continuous wavelet analysis associated with the 
similarity group of the plane. 

111. WAVELET FORMULATION OF THE PROBLEM 
A. Analysis of the Backscattering Coefficient. The prin- 
ciple of continuous wavelet analysis [5-81 will first be recalled 
to fix notations in the two-dimensional case and emphasize the 
relationship between the space (x, k) and the similarity group. 

Let @(k) be a basic wavelet supposed t o  represent the 
backscattering coefficient of a template target which would be 
located about the point x = 0 and would reflect mainly in the 
direction of 0 = 0 at a frequency characterized by k = 2 f i  
c = 1. By convention Q, is thus attached to the point Po 
defined by the coordinates 

x = O ,  k = ( k ,  0) = (1,e).  (11) 

dk 
k 

X dk' d k  dx 7 

or ,  after performing the x and k integrals, 

I IC(x, k)12 dx dk 
R' x R' 

= ~ l H ( k ' , 0 ' ) 1 2 1 @ ( ~  k' , 0 ' - 0 ) /  ' d k ' p .  dk (17) 

A change of variables then leads to the so-called isometry 
formula: 

where the function x depends only on  the choice of the 
mother wavelet and is given by 

For finiteness of (18), the wavelet @ must satisfy the so-called 
admissibility condition x < w. In that case, formula (15) can 
be inverted, allowing the reconstruction of H from its wavelet 
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coefficient according to  wavelet in (15). Here instead, we propose a computation 
which can be  uerformed directlv in polar coordinates provided - .  
that the sampling of the backscattering function corresponds 

X ( @ )  (20) to  regularly spaced angles and geometrically spaced fre- H(k) = I C(x, k)QXk(k) dx dk . 

6. Generation of a Spectral Image. The above wavelet 
scheme yields a possible candidate [4] for the spectral image 
that can be set equal to  

quencies. 
The definition, properties, and discretization of the Mellin 

transform relevant to signal analysis have been recalled in the 
Appendix. The present application corresponds to the special 

1 (21) case r = 0. 
The  Mellin transform of the backscattering function with R(x, k) = x IC(x, k)12 , 

where C is defined by (15). In this case the kernel in relation 
(4) has the following form: 

respect to k is defined by 

A [HI(  p , 0 )  = [ H ( k ,  0)k2'"' dk (24) 
J U  

and satisfies a Parseval formula given by 

This choice has several interesting features. The image so 
defined is a positive function which transforms as required in 
Section 'I under a change Of observers' Namely' when a 
similarity transformation is applied to the backscattering co- 
efficient H as in (7). the definition of the wavelet coefficient 

To apply these formulas to the _comput_ation of the wavelet 
coefficient, define the functions and @ by 

(14) implies that k(x, k) in (21) is transformed by (9) and the 
interpolation (10) holds. It is also possible to  proceed further 
in computing the integral of R(x, k) over x-space. This gives 

1 I R(x, k) dx = c" d0' 1 d k ' k ' ( H ( k ' ,  0')12xx-' - 
k' 

1 k' 
6(k' )  = @( , 0') . 

Then (15) becomes 

The result is a smoothing of the radar cross section which 
depends on the spectral width of the basic wavelet and which 
commutes with the action of the similarity group. This implies 
that the x integral of R is transformed like a cross section in a 
similarity transformation and can thus be interpreted con- 
sistently by different observers. Moreover, if the mother 
wavelet @ is made to  shrink around the point ( k  = 0, 0 = 0), 
the right-hand side of (23) will come closer and closer to (HI2,  
thus featuring the behavior of R(x,  k) as a spatial distribution 
of bright points characterized by k. However, in this process, 
the wavelet spreads out in x space and all information on the 
position of the points is lost. This tradeoff between x and k 
localization is inherent to the problem and will be discussed in 
Section V. 

All these remarks strongly support the choice of (21) as a 
definition of the spectral image. In the formulation, the 
inescapable fuzziness due to the uncertainty relations is con- 
trolled by the choice of the mother wavelet @. 

IV. IMPLEMENTATION TECHNIQUES 
A. Interest of the Metlin Transform. Samples of the back- 
scattering coefficient H are obtained experimentally in polar 
coordinates k,0 and the straightforward computation of the 
wavelet coefficient defined by (15) requires to change from 
polar to Cartesian coordinates before performing a two- 
dimensional Fourier transform. However, such operations are 
very costly as they rely heavily on resampling, first to obtain 
Cartesian samples of H and then to  perform dilations of the 

Property (52) of the Mellin transform implies 

A [6]( /3, 0' )  = k21vpA [@I( p ,  0' )  . (29) 

Finally, introducing the Fourier coefficients of functions 
Jzz [ H I (  P ,  0') and A [@I( /3,0') according to  the formula 

J&,[&](p) = 2 7 ~  1 I 2n A [ f i ] ( p ,  O')e- rno '  d 0 ' ,  (30) 

we are able to rewrite the expression of the wavelet coefficient 
as 

C(x, k) = c I:s dp J&,[fi]( p)J&,*[@]( p)e'"ek-2'"P . 
" 

(31) 

In this form, the computation of the wavelet coefficient 
reduces to  Fourier and Mellin transforms which can all be 
performed by a fast Fourier transform (FFT) algorithm. First, 
the Mellin and Fourier transforms A,,[@]( p )  of the basis 
wavelet @ is obtained once and for all by two FFTs. Then, for 
each position x_of the bright points, the Mellin and Fourier 
transforms &,[HI( p )  of H(k)e2'ak'x are computed, also using 
two FFTs. Finally, two inverse FFTs yield the dependence of 
C on  angle 0 and frequency k .  The whole process can be done 
all over for different values of position x. 
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B. Rules of Sampling. In any practical situation, the limited 
extension of H ( k ,  0)  in k and the finite size of the target imply 
that, for a reasonable wavelet, the support of coefficient C 
will also be limited in (x,k) space. A more thorough descrip- 
tion of this space is provided by the affine time-frequency 
distribution [9, 101 reinterpreted as an ( x ,  k )  distribution 
P ( x ,  k ) :  it associates hyperbolas x = x,, + P / k  with signals 

of the Mellin "basis." In this way the p Mellin 
variable gets an interpretation in (x, k) space which allows one 
to determine directly the support of A( /3, 0) .  Namely, if H is 
zero outside the interval [ k , ,  k , ]  and if the maximum length 
of the target in any direction is L ,  distribution P is approxi- 
mately equal to zero outside the shaded region displayed on 
Fig. 1. From there it can be shown that the extreme values of 
the support ( p ,  - p )  of A( p, 0 )  correspond to the p labels of 
the hyperbolas limiting the region. According to Fig. 1, this is 
given by 

k - l - 2 , n p  -,nr** e 

p = k , L l 2 .  (32) 

Coefficient C can now be computed according to (31). First, 
for a given 0, choose N, samples of H geometrically spaced in 
the following way: 

H ( n ,  0)  = H(k,Q"": 0)  , 0 s  n < N, , (33) 

where 

Q = k , / k ,  . (34) 

As seen in Sec. A.2 [Eqs. (A21) and (A24)], computation of 
the discrete Mellin transform of H requires that the number 
N, of samples be such that 

(35) 

Relations (32) and (34) then lead to the condition that must 
be satisfied by the number of samples in the k domain to 
avoid aliasing. With the relation k = 2f/c, this condition can 
be written directly in terms of frequencies as 

Integration on the 0 variable reduces to a discrete Fourier 
transform which is performed in the usual way. This leads to 
choose NR samples such that 

No > 2  A0f2Llc, (37) 

X 1 ( hyperbolas : x = xo+ 5 l k  

Figure 1. Determination of the p extent for a target with maximal 
length L located around x,, and analyzed on [k,, k,]. 

where A0 represents the range of 0 for which the coefficient H 
is different from zero. 

In conclusion, the N, useful frequency samples must be 
chosen geometrically spaced and verifying condition (36) 
while the N, angular samples must be regularly spaced in the 
usual way, as shown in Fig. 2. The computation is then 
performed directly with these samples of the backscattering 
coefficient. 

Let N, and N, denote the number of points in range and 
cross-range space, respectively. The complexity of the algo- 
rithm is given by 

NxN,,[(2N, + 1) FFT of N, points 

+ (2N, + 1) FFI of No points] 

for a number NrNR of computed radar images. 

V. APPLICATION TO PRACTICAL SITUATIONS 
In each application, the resolution of the images in x space 
will depend on the choice of the basic wavelet. To guide this 
choice, we will first study how these resolutions are related to 
the spread of the wavelet in k space. 

A. Interrelations of the Resolutions. Suppose the analyzed 
domain in ( k ,  0 )  space is centered at ( k =  k, ,  0 =0,) and 
spreads out on a band Ak and an angular width A0. Choosing 
as basic wavelet @ the characteristic function of the domain 
1 - Ak/2 < k < 1 + Aki2, -A0/2 < 0 < A0l2, we obtain the 
following expression for the wavelet coefficient (15) computed 
at point ( k  = k , ,  0 = 0,): 

'(" k'l' 
k U ( l + A k / 2 )  f l o + A 9 / 2  

= l k o ( l - A k 1 2 )  Lo-,,/, H ( k ' ,  0' )  
e 2 s n k ' [ x 0  c o s ( R ' - e , )  + y o  \nn(s'-Oo)l 

k' 
x - dk' d0' , 

k,, 

where (x,,, y o )  are the coordinates of x in a frame rotated by 
0,. 

It is interesting to note that (38) is nothing but the classical 

Under the small-AO assumptions, sin(0' - 0,) = 0' - 0,), 
formulation of two-dimensional radar imaging [3]. 

Figure 2. Sampling mode of the backscattering coefficient. The 
frequency samples are collected in geometrical progression on the 
analysis frequency bandwidth while the angular samples are col- 
lected in the classical way. 
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cos(0' - 0,) = 1, and the coefficient (38) can be approximated 
as 

The interrelation between 0 and x variables has completely 
disappeared and the range resolution thus depends only on 
the bandwidth. Besides, the resolution in the product k y ,  is 
directly related to the resolution in variable 0. 

The classical method to  compute the expression of C given 
by (39) is to perform the discrete Fourier transform on the 
frequency (dual variable x , )  and angular variables (dual vari- 
able ky  = 2fy,/c). This method is interesting in terms of the 
number of operations to perform. Nevertheless, this tech- 
nique must generally be followed by a resampling in cross- 
range space due to the frequency dependence of the result. 

If we denote by L,,, the maximal length of the target, the 
classical Nyquist conditions in (x, f )  space and in ( y ,  0) space 
respectively lead one to  choose the different sampling inter- 
vals Ax,  Af,  A y ,  and A0 verifying 

(40) 
C C 

A X < -  A f < - ,  
2 B  ' 2 L a x  

In the wide angular extent case, the expression (38) cannot 
be approximated by (39) and its computation is more com- 
plex. The different resolutions in range, cross range, fre- 
quency, and angle spaces depend on each other and it be- 
comes very difficult to  express their mutual dependence ana- 
lytically. Nevertheless, a numerical analysis can be made by 
computing the response of a white and isotropic bright point 
located in x~ , .  This will be done in the next section using a 
particular wavelet. 

B. A Special Wavelet and Its Analyzing Performances. 
The chosen wavelet is the product of a Gaussian wavelet in 
angle space and a minimal Klauder wavelet [ l l ]  in k space: 

(42) 
@ ( k ,  0) = k2"Ae-2mA -S21202,  e 

The spread of the wavelet in the k variable is related to the 
real parameter A by 

1 
Uk = - v z z  

or equivalently in f space by 

C 
or = - 

4 G '  

(43) 

(44) 

To illustrate the analyzing performances of this wavelet, 
we apply it to the study of the following backscattering 
coefficient: 

(45) 

This expression can be interpreted as the backscattering CO- 

efficient of a bright point situated at  X, and reflecting evenly 
for all frequencies and all directions. The factor l l k  is neces- 
sary to  ensure that HXo(k) is transformed consistently into 
H,B+,n+b(k)  in a change of observers ( 5 )  characterized by 

The  wavelet coefficient of (45) is given according to  (15) 
( a ,  3 6 ,  b). 

by 
C(X - x", k ,  0)  = lT dot [ e 2 i ~ k " ( x - x o )  

1 
k x @ * ( k ' / k ,  0'  - 13) - dk' . (46) 

In the small angular extent case, as seen in the previous 
section, the resolutions in frequency and range spaces are 
independent of the resolutions in angle and cross-range 
spaces. The different resolutions ox and q of the computed 
radar images are now given by 

(47) 

where uf and u, represent the width of the wavelet @ in 
frequency and angle, respectively. The interplay between 
these different resolutions is illustrated on  Fig. 3 for a given 
frequency k and angle of presentation 0. There it can be seen 
that when A is increasing, i.e., when the bandwidth af is 
decreasing, the range resolution ux of the radar image be- 
comes poorer. A n  analogous relation exists between the 
angular resolution ae and the cross-range resolution ay. 

In the wide angular extent case the analyzing performances 
of the wavelet have been studied numerically and the results 
are displayed in Figs. 4 and 5.  

Figure 4 shows the behavior of one bright point for a given 
frequency width and growing angular extent of the wavelet. 

Figure 5 presents the same result for a given wide angular 
width but different spectral extents of the wavelet. One can 
remark, especially with Figs. 5(c) and 5(d), that despite the 
narrow spectral extent of the wavelet, the range resolution is 
better than in Fig 3(d); this gives an illustration of the 
coupling between the different resolutions. 

C. Examples of Results in a Laboratory Experiment. We 
now present applications to  an experiment made in an anech- 
oic chamber on  a model of a missile (Fig. 6 )  which is 60-cm 
long and 40-cm wide. The analysis bandwidth is 8.2-12.4 Ghz 
and the angles vary between -30" and 30". The samples of the 
complex backscattering coefficient are collected geometrically 
in frequency space and regularly in angle space (Fig. 2 ) .  

Figures 7-10 represent the results obtained with the com- 
putational technique described in Sec. IV for different values 
of parameters A and a, in the wavelet (42). In each case we 
have chosen to  display only three images among the Nf x N, 
that the algorithm delivers. 

Figure 7 represents the two-dimensional radar images ob- 
tained for three different frequencies but for a unique direc- 
tion of illumination. The parameters A and uo are chosen so as 
to  have good range and cross-range resolutions. One can 
notice that the three images are not fundamentally different in 
frequency (the wavelet has a wide bandwidth) with neverthe- 
less a better range resolution at  high frequency. 

Figure 8 represents the same analysis but with a narrow- 
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( a )  ( b I ( C )  ( d l  

Figure 3. Spatial versus frequency-directivity resolution of a bright point when the bandwidth of the wavelet decreases. Case of narrow 
angular extent. 

( a )  ( b )  ( c l  ( d l  

Figure 4. Spatial versus frequency-directivity resolution of a bright point for increasing angular extent of the wavelet 

band wavelet. In this case, the range resolution is not as good 
as in the previous series but the sensitivity of the pictures to 
frequency has been increased. These two examples show the 
duality between good resolutions in range and in frequency. 

Figures 9 and 10 show the behavior of the radar images for 
different angles of target presentation but for the same fre- 
quency. The parameters of the wavelet in Fig. 9 are chosen so 

as to give a good range and cross-range resolutions. One can 
notice that the right wing has disappeared for 0" = -25" and 
the left one for 0, = 25". 

The image series of Fig. 10 is the result of the search for 
good resolution in frequency and directivity. The price to pay 
is clearly a degradation of the spatial localization of the 
points. 
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Figure 5. Spatial versus frequency-directivity resolution of a bright point when the bandwidth of the wavelet decreases. Case of wide angular 
extent. 

Figure 6. Missile model : used for two-dimensional radar imaging. 

( b !  

Figure 7. Two-dimensional radar images of a missile. (analysis on [8.2, 12.41 Ghz and [-20, 201 degrees) obtained for large frequency 
( A  = 10) and angular (m8 = 20") width of the wavelet. The three images are given for the set of parameters ( f  = 9 Ghz, 8, = o"), ( f  = 10.3 Ghz, 
8,=0"), and ( f = l l . 3 G h z ,  8,=o"). 
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( (1 ( b )  ( c )  
Figure 8. Two-dimensional radar images of a missile (analysis on [8.2, 12.41 Ghz and [- lo, 101 degrees) obtained for narrow frequency 
( A  = 100) and large angular (0 = 20") width of the wavelet. The three images are given for the set of parameters (f  = 9 Ghz, 0, = O"), 
(f=10.3Ghz, O,=O"), and (f=11.3Ghz, O o = O " ) .  

l o )  r b ~  ( c  1 
Figure 9. Two-dimensional radar images of a missile (analysis on [8.2, 12.41 Ghz and [-30, 301 degrees) obtained for large frequency 
( A  = 10) and angular (no = 20") width of the wavelet. The three images are given for the set of parameters (f  = 10.3 Ghz, 0, = -25'7, 
(f=10.3Ghz, O,=O"), and (f=10.3, 8,=25"). 

- .  

( a )  ( b )  ( C )  

Figure 10. Two-dimensional radar images of a missile (analysis on [8.2, 12.41 Ghz and [-20, 201 degrees) obtained for large frequency 
( A  = 10) and narrow angular (u8 = 5") width of the wavelet. The three images are given for the set of parameters (f  = 10.3 Ghz, 0, = -15"), 
( f =  10.3Ghz, @,=On), and (f=10.3Ghz, 8, =15"). 
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Figure 11. Construction scheme of the discrete Mellin transform. 
(a) Continuous form of the spectrum Z(f) and its Mellin transform. (b) 
Dilatocycling of Z(f)  with the ratio Q = fJf, and the sampled form of 
its Mellin transform with rate 1 /In Q. (c) Geometric sampling with ratio 
q ( q N  = Q) of the dilatocycled form and periodized form with period 
1 /In q of the sampled Mellin transform. Identification of the N sam- 
ples in frequency and Mellin spaces leads to the discrete Mellin 
transform (A29). 

VI. CONCLUSIONS 
We have presented a new method to obtain images of a radar 
target whose backscattering coefficient H(k) has been mea- 
sured as a function of frequency and orientation for fixed 
polarizations. The novelty of the procedure lies, on the one 
hand, in the introduction of a mathematical function of four 
variables R(x ,  k) to represent the spectral image of the target 
and, on the other hand, in the use of an original method of 
computation which yields the whole frequency-directivity de- 
pendence of each point in a single stroke. 

The construction of R(x,  k) has been based on the main 
requirement that the correspondence between H( k) and 
R(x,  k) be invariant, in a definite sense, under the similarity 
group of the plane. We then made use of wavelet analysis 
associated with this group to obtain an analytical expression of 
the spectral image in terms of the backscattering function. 
This expression depends on the choice of the basic wavelet 
which can be varied at will. As an example, the use of a 
window-type wavelet in k space corresponds to introducing 
frequency-directivity scanning in the usual theory of radar 
imaging. A more elaborate analysis is provided by the special 
wavelet (42) which is well localized in x and k space and 
allows a simultaneous study of the dependence of the image 
on all four variables, with resolutions varying according to  the 
spread of the wavelet. 

The  computation of the wavelet coefficient entering the 
expression of R(x ,  k) has been carried out by resorting to  a 
special Mellin transform on the radial variable. This transform 
has been singled out by past work on affine time-frequency 
distributions and has been made efficient by discretization 
along with rules of sampling and fast algorithms. An im- 
portant point in the present application is that the computa- 
tion uses data in polar format, geometrically distributed in 
frequency, and no resampling is ever done. It is also worth 
stressing that the proposed algorithm could be easily im- 
plemented on a parallel computer. 

To illustrate the connection between the spreading of the 
basic wavelet and the resolutions of the image we have 
performed the analysis of a single bright point with wavelets 
of different spreads. Such a study gives indications for the 
practical choice of parameters in a real case. Finally, an 
illustrative application of the method has been given by 
imaging an actual target. 
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APPENDIX: THE MELLIN TRANSFORM 
1. Definition and Properties of the Mellin Transform 

a .  Definition. The Mellin transform used above was previ- 
ously introduced in the problem of wide-band time-frequency 
representation [9] and will be recalled here in that framework. 
The  main interest of this approach is to yield an interpolation 
of the Mellin variable that permits the establishment of a 
complete sampling theorem. The lack of such a theorem has 
often restricted the exploitation of the transform in spite of 
thorough studies on its discretization [12]. 

In the following, the frequency variable f will be used and 
application to  Sec. IV will require one only to change from f 
to  k .  

Let Z(  f )  be an analytic signal belonging to  
L2(R', f"" d f ) ,  i.e. with the norm given by 

( Z ,  2)  =lo' lz(f)12fz'+1 df > (Al)  

where r is an arbitrary real number depending on the appli- 
cation. 

The Mellin transform of Z is defined by 

A ' [ Z ] ( p )  =I Z ( f ) e 2 ' r r ~ f ( ~ ~ 2 ~ ~ p f r d f ,  (A2) 

where f ,  is a reference frequency (chosen arbitrarily) and 
where 5 is a real parameter. 

The inversion formula is 

('43) 

The reference frequency f ,  will usually be equal to 1; as a 
result the dimensional consistency of the formulas will no 
longer be  manifest. 

We now give a list of properties of this transformation. 
They can be easily established as in the case of the ordinary 
Mellin transform. 

6. Behavior Under Dilations. The basic feature of trans- 
formation (A2) appears when performing on the signal a 
dilation of factor a > 0 around a chosen time 5. This oper- 
ation, which is defined by 

('44) 
r + l  - Z r r r [ ( l - a ) f  

Z (  f ) -  Z ' ( f )  = a e Z(af 1 > 

48 Vol. 5 ,  39-51 (1994) 



is represented in Mellin's space as a mere multiplication by a 
phase: 

A * [ Z ] ( p ) - + A ' [ Z ' ] ( / 3 )  = U - ~ ' " ~ A * [ Z ] ( ~ ) .  (A5) 

c. Parseval's Formula. If A*[2,] and &*[Z,] are the 
transforms of 2, and Z,, respectively, then the inner product 
of Z ,  and Z,  can be expressed as 

~ ~ [ Z , l ( P ) ( ~ * ) * [ Z , l ( P )  dP . ('46) 

d .  Transformution of the Invariant Product. Define a spe- 
cial product noted 0 for two signals Z ,  and Z,  by 

This definition is made to ensure the invariance of the product 
under transformation (A4). Namely, when both Z ,  and Z,  are 
transformed according to (A4), then Z ,  0 Z,  is transformed in 
the same way. This is the counterpart of the property of the 
ordinary product with respect to  translations. 

The Mellin transform of the product Z ,  0 Z ,  is given by the 
convolution of the Mellin transforms of Z ,  and Z,: 

e .  Transformation of the Multiplicative Convolution. For a 
given signal S , ( t )  the familiar convolution S, * S, of S, with 
any other signal S, is the most general linear operation 
commuting with time translations that can be  performed on 
S , .  Here, since only frequency dilations are available, a new 
type of convolution has to be introduced. By analogy to  the 
case of translations, the "multiplicative convolution" of Z ,  
and Z ,  is defined as the most general linear operation on Z ,  
that commutes with dilations (A4). More precisely, suppose a 
linear operator C, is defined in terms of a kernel function 
C,( f ,  f ' )  according to 

C,[Z,l(f) = J"= Z I ( f ' ) C * ( f >  f') df' . ('49) 

Then the requirement that transformation (A4) applied either 
on  Z ,  or C,[Z,] yield the same results implies that 

r + l  - zm*( l - a ) f  
a e  C,[Z, l (af)  

,(af ')C*(f, f ' )  d f '  ' 

In the following, the arbitrary reference frequency f, will be 
set equal t o  1 .  Having the general form of a linear operator on 
Z ,  that commutes with dilations, we may in particular choose 
C,(l, f) t o  be itself a signal Z,( f )  and define the "multiplica- 
tive convolution" of Z ,  and Z,  as 

A straightforward computation shows that the Mellin trans- 
form of the multiplicative convolution of the two signals 2, 
and Z,  is equal to the classical product of their Mellin 
transforms: 

Jbl*[Z, ** Z,] = A * [ Z , ] A * [ Z , ] .  (A141 

2. The Discrete Mellin Transform. Discretization of the 
Mellin transform (A2) is performed along the same lines as 
discretization of the Fourier transform. It concerns signals 
with support practically limited, both in f space and in /3 
space. In fact, the discretized Mellin transform will give a 
relation between N geometrically spaced samples of Z(f) and 
N arithmetically spaced samples of A [ Z ] ( p >  [13, 141. 

In the development of the discrete Fourier transform, a 
special role is played by the "Dirac combs" that are invariant 
by suitable discrete translations. The counterpart here is the 
geometric sampling distribution defined for a given ratio Q by 

S ( f -  Q " )  . (A151 

This expression is invariant by dilations (A4) of parameter a 
equal to a power of the ratio Q. The Mellin transform of 
(A15) is 

= 
AS.'(f, Q )  = c ~ - n r ~ - ? r ' . E Q "  

"=--" 

which is the Fourier series of the regular Dirac comb: 

The  discretization follows the same steps as in the case of the 
Fourier transform and will now be detailed. 

1. Adjustment of the periodization procedure to the pres- 
ent case leads to the definition of a "dilatocycled" form Z d  of 
the signal Z by 

x 

Using expression (56) together with the fact that relation (57) 
must be true for any Z , ,  we get the following constraint on 
the kernel 

where Q = f 2 / f ,  is the ratio of the maximum and minimum 
frequencies of the support of Z .  

Using the A distribution (A15) and the muliplicative con- 
volution (A13) makes it possible to  rewrite (A18) in the more 

C,(af, af') (Al l )  compact form C*(f ,  f !) ~ a e - 2 1 " * ( 1 - 4 ( f - f ' )  

valid for any a. The choice a = fJf finally leads to Z"( f )  = A".'( f ,  Q )  ** Z(f) . (A191 

2. The Mellin transform of Z d  is obtained from (A19) by 
c ~ ( f u ,  hi 5) . (A12) using (A14) and (A17). I t  reads 
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1 -  where the integer K is given by the integer part of PI In Q. 
Inversion of (A28) is performed using the classical techniques 
of discrete Fourier transform. This leads to  the discrete Mellin 

.u:[zdl(P)= Z m 6 ( P  - &)""lf[zl(P). 

(A20) transform formula: 

M + N - 1  
The result is a distribution which is characterized by arithmeti- 
cally spaced samples of & * [ Z ] ( P ) .  AX'J(G)= c q n(r+ I) e 2 i n < q n Z d ( q n ) e 2 i = n m / N  

(A291 
3. The function is then periodized in the familiar way n = M  

with a period l / l n  q which must satisfy the condition 

in order to  avoid aliasing. 

written: 
According to  (A17), this periodization operation can be 

It is clear from (A7), (A8), (A15), and (A17) that the inverse 
Mellin transform of expression (A22), which can be written as 

z;?(f>=A(f> 9)"Z"( f )>  (A23) 

is a distribution built with 6 functions at geometrically spaced 
frequencies. These successive operations are illustrated in Fig. 
11. 

If the real numbers Q and q appearing in (A20) and (A22) 
are connected by the relation 

Q = q N ,  

where the integer M is given by the integer part of In f,/ln q. 
In fact, since the definition of the periodized A"' contains a 
factor Nl ln  Q = l l l n  q ,  the true samples of & ( P )  are given 
by (In Q/N)A'(rn/ln Q ) .  As can be seen on formula (A29), 
the explicit computation of the discrete Mellin transform may 
be carried out using any FFT algorithm. 

A prerequisite to be able to  apply the above formulas to 
signal analysis, where the signal Z is given with a band B and 
a duration T ,  is to  find the corresponding support in P of the 
Mellin transform A of 2. This is performed by invoking the 
affine time-frequency representation which yields an interpre- 
tation of the P variable in the time-frequency half-plane as 
labels of the hyperbolas defined by t = 5 + P/f [9, 13, lo]. 
Suppose signal Z is represented by a distribution P whose 
support lies mainly in a region limited by lines f = f,, f = f,, 
t = 6 - T/2, and t = 6 + Tl2. Then the two hyperbolas bor- 
dering the domain correspond to  the extreme points PI, P2 of 
the support of A. Their values are determined by the equa- 
tions 

T P 2  

2 f 2  
& + - = & + - ,  

(-431) 
6 -  - T = 6 +  2. P where N is a positive integer, then function &:.' defined by 

(A22) is of periodic impulse type and its inverse Mellin 

distribution can be computed explicitly using (A17) and 
(A20). The result is 

transform is of dilatocyclic [cf. (AN)] impulse type. This 2 f* 
Hence the support of the Mellin transform is characterized by 

f T  

(-432) 
J 2  P,== ,>  P, -P ,= f ,T .  1 "  

In Q ,,,-= 
3. Practical Use of the Discretization Formula. Given a 
signal Z on some frequency band [f, , f,] and with duration T ,  
the  operations to be performed are the following: 

- Find the support [ P , ,  P,] of the Mellin transform of Z 
using (A32). 

- Set Q = f,lf,. 
- Choose the number of samples N in the discretization of 

(A25) 

where the periodized Mellin transform 4 ','( P )  with period 
l / l n  q = Nlln Q is defined by 

1 "  
In q ,,,=-" 

&*, ' (p )=  - c A'(p-  "). (A26) In 4 the signal such that q defined by 

The discrete Mellin transform formula is obtained by 
equating A:.' given by (A25) and the Mellin transform of 2; 
which according to  (A2) and (A23) can be written as 

= verifies 

& : . P ( p )  = 
q n ( r + l ) ~ d ( q n ) e 2 ~ n n p  In e 21rrSq" 

n = - x  

In Q I n q = - -  N 

- Apply (A29). 
(A271 

Computing the Fourier series coefficient of A:" yields 

- n ( r + l )  K + N - I  c 4 ~ . P ( ~ ) e - 2 i r m n 1 N  - 2 ~ r r 5 q "  4 
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