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Context: The Radar detection problem

• Primary goal of Radar systems: detect targets.
• Emit signal, and search for echoes in received signal.

• Received signal depends on unknown target parameters θ.
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Formalization: The Radar detection problem

The classical Radar detection problem is the following binary Hypothesis
Test: {

H0 : r = n
H1 : r = α s(θ) + n , where

• r ∈ CN is the observation,
• s(θ) ∈ CN is the signal echo reflected by a target with parameters θ

(range, angle, Doppler...),
• α ∈ C is the complex amplitude of the received signal,
• n ∈ CN is the additive noise vector, independent of the source signal.

Our results hold for any spherically invariant distribution such as
n ∼ CN (0, σ2 Γ).

s(θ) : General spectral analysis model (angle or Doppler with Radar) :

s(θ) =
1√
N

h
1, e2iπθ, . . . , e2iπ(N−1)θ

iT
.
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The Generalized Likelihood Ratio Test

The Generalized Likelihood Ratio Test is given by:

Λ(r) =
max
λ1

fH1
(r)

max
λ0

fH0
(r)

H1

?
H0

η.

where
• for i ∈ {0, 1}, fHi

is the density function of r under Hi and λi
are the unknown parameters under Hi,

• η guarantees a fixed Probability of False Alarm (PFA).
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The Normalized Matched Filter
• When λ1 = {σ, α} and λ0 = {σ}, with θ known, the GLRT reduces to the

following Normalized Matched Filter (NMF) [Scharf and Lytle, 1971]:

tΓ(r, θ) =

˛̨
s(θ)H Γ−1 r

˛̨2`
s(θ)H Γ−1 s(θ)

´ `
rH Γ−1 r

´ H1

?
H0

η.

• Let us define the whitened and normalized versions of s(θ) and r:

s(θ) =
Γ−1/2 d(θ)`

s(θ)H Γ−1 s(θ)
´

u =
Γ−1/2 r`
rH Γ−1 r

´
• So that we can rewrite the NMF as:

tΓ(r, θ) =
˛̨̨
sH u

˛̨̨2 H1

?
H0

η. (1)

with u and s(θ) on the unit complex N-sphere.
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Mismatch and off-grid targets

• The NMF test quantity is
the cosinus of the angle
between s and u.

• In practice, θ is unknown.
Mismatch δ = θ− θ0 with
θ0 the test parameter.

• Whatever the signal power
α value, if the mismatch is
too big the signal is not
detected.
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The Grid Principle

• The tests are run considering fixed values of θ in a grid G.
• In practice θ ̸= θ0 → mismatch → drop in detection performance.

• Grid cells :
»
k

N
−

1

2N
,
k

N
+

1

2N

–
, parameters θ0 =

k

N

6On the false alarm probability of the Normalized Matched Filter for off-grid target detection



Impact of off-grid targets on the NMF

• The angle mismatch degrades
the NMF response.

• θ uniformly distributed in a cell→ Expected Probability of
Detection (PD):
domain under threshold

whole domain

• PD 9 1 [Rabaste et al., 2016]
• It is even worse when Γ ̸= I
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Existing Solutions
• Extension of the GLRT to off-grid targets:

GLRT(r, θ0) = max
θc∈[θ0−∆/2,θ0+∆/2]

tΓ(r, θc)
H1

?
H0

η.

The best PD, no closed form available, threshold
unknown, precise approximation can be costly.

• Existing sub-optimal cost-efficient solutions include
• Oversampling approximate GLRT, threshold unknown
• Using DPSS subspace to approximate the cell structure,

analytical threshold [Bosse and Rabaste, 2018]
• Using a monopulse-inspired detection scheme that

approximates the GLRT, no analytical threshold
[Develter et al., 2021].

• These solutions do not correct the convergence issue for
all Γ and are not always near GLRT. This motivates studies
on the true GLRT.
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Finding the PFA of the NMF geometrically

• Since u is whitened, it is
distributed uniformly over the
whole sphere.

• Thus PFA = Acceptance Zone Surface
Rejection Zone Surface .

• This gives: PFA = (1−w2)N−1.
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The NMF-GLRT

• The GLRT corresponding to the NMF when θ is considered
as an unknown parameter over a search domain D gives:

GLRT(r,D) = max
θc∈D

˛̨̨
s(θc)Hu

˛̨̨ H1

?
H0

w ′

• The threshold is unknown, different from the NMF.
• It depends on the distribution of a continuum of

non-independant variables → a priori hard to compute
analytically.

• We use a geometrical method akin to the previous one.
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Methodology for real signals

• Consider for now u and s ∈ RN.

• u falls in the spherical cap SCθ

corresponding to any θ ∈ D ⇐⇒
u ∈

S
θ∈D SCθ → A target is

detected

• S
θ∈D SCθ forms a tube.

• Thanks to [Hotelling, 1939] we can
compute the volume of this tube as
the product of the cross section by
the length of the curve.

• Valid as long as there is no overlap
(the tube draws back into itself).
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Rewriting our problem with real vectors

• Now u and s ∈ CN.
•
˛̨
s(θ)Hu

˛̨
= maxα Re

`
s(θ)Hue−iα

´
.

• Translating our problem to real signals → we have to
maximize on the phase α of the product s(θ)Hu.

• In the end, we find that

max
θc∈D

˛̨̨
s(θc)Hu

˛̨̨
= max

{θc,α}∈D×[0,2π]
(γ1(θc) cosα+ γ2(θc) sinα)Tu

where γ1(θc) =

»
sr (θc)
si (θc)

–
, γ2(θc) =

»
−si (θc)
sr (θc)

–
and u =

»
ur

ui

–
is a 2N-real valued noise vector drawn uniformly on S2N−1

under H0.
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Methodology with complex signals
• We have to compute the volume of the tube around the 2D

manifold γ(α, θ) = γ1 (θ) cosα+ γ2 (θ) sinα.

• Not covered by Hotelling, however
[Johnstone and Siegmund, 1989] gives the following
theorem:

Theorem
For i ∈ [1, 2], let γi : [0, t0] → Sn−1 be regular curves. Assume γ1(t)Tγ2(t) = 0 for all t. Let

Z(t) =

»“
γ1(t)Tu

”2
+
“
γ2(t)Tu

”2–1/2

where u is uniformly distributed on Sn−1. Then for 0 < w < 1,

we have:

P
 

max
0≤t≤t0

Z (t) > w

!
≤ (1 − w

2
)
(n−2)/2

+

Γ

„
n

2

«
w (1 − w2)(n−3)/2

2π3/2 Γ

„
n − 1

2

«

×
∫
t0

0

∫
2π

0

»
∥γ̇1(t) cosω + γ̇2(t) sinω∥2 −

“
γ̇1(t)

T
γ2(t)

”2–1/2

dωdt ,

where γ̇i(t) is the derivative of γi(t) with respect to t. When there is no overlap, this inequality becomes an
equality.
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Final Results
Applying the previous theorem in our case, we get the following
corollary :

Corollary
In the absence of overlap (low PFA regimes), the PFA for the
NMF-GLRT for a search interval D = [θ1, θ2] with the steering
vector s (θ) defined previously is given by:

• Under white noise (Γ = σ2 I):

PFA =

on-grid relation︷ ︸︸ ︷
(1−w2)N−1+ (2)r

π

3

Γ(N)w (1−w2)N− 3
2

Γ
`
N− 1

2

´ “
N2 − 1

” 1
2

(θ2 − θ1)︸ ︷︷ ︸
length of search domain

.

• Under colored noise (Γ ̸= σ2 I), the integral in (2) can be
evaluated numerically.

14On the false alarm probability of the Normalized Matched Filter for off-grid target detection



Final Results
Applying the previous theorem in our case, we get the following
corollary :

Corollary
In the absence of overlap (low PFA regimes), the PFA for the
NMF-GLRT for a search interval D = [θ1, θ2] with the steering
vector s (θ) defined previously is given by:

• Under white noise (Γ = σ2 I):

PFA =

on-grid relation︷ ︸︸ ︷
(1−w2)N−1+ (2)r

π

3

Γ(N)w (1−w2)N− 3
2

Γ
`
N− 1

2

´ “
N2 − 1

” 1
2

(θ2 − θ1)︸ ︷︷ ︸
length of search domain

.

• Under colored noise (Γ ̸= σ2 I), the integral in (2) can be
evaluated numerically.

14On the false alarm probability of the Normalized Matched Filter for off-grid target detection



Final Results
Applying the previous theorem in our case, we get the following
corollary :

Corollary
In the absence of overlap (low PFA regimes), the PFA for the
NMF-GLRT for a search interval D = [θ1, θ2] with the steering
vector s (θ) defined previously is given by:

• Under white noise (Γ = σ2 I):

PFA =

on-grid relation︷ ︸︸ ︷
(1−w2)N−1+ (2)r

π

3

Γ(N)w (1−w2)N− 3
2

Γ
`
N− 1

2

´ “
N2 − 1

” 1
2

(θ2 − θ1)︸ ︷︷ ︸
length of search domain

.

• Under colored noise (Γ ̸= σ2 I), the integral in (2) can be
evaluated numerically.

14On the false alarm probability of the Normalized Matched Filter for off-grid target detection



Numerical evaluation

• Plot of the previous relation
with Γ = I against simulated
threshold with 108 noise
samples, N = 10,
D = [0, 1/N], GLRT
approximation with 30 tests.

• Low PFA of practical interest
in Radar → the formula fits
perfectly.

• Very High PFA → slight
mismatch because of overlap
phenomena.
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Conclusion

• In this work, we derived a PFA-threshold relationship for the
GLRT of the NMF extended to an unknown parameter of
the target. It is exact for low PFA of practical interest in
Radar.

• Perspectives include the extension of this work to STAP
(2D) detection and writing a journal paper deriving
conditions under which no overlap arises.
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