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Abstract

This poster suggests a supervised classi�cation of
scatterers in radar imaging. Indeed, in usual radar
imaging, it makes the assumption that scatterers are
isotropic and white in the emitted frequency band.
New radar imaging applications cannot make these hy-
potheses. Time-frequency analysis allows to release
this main drawback. Radar polarimetry is another
source of information about scatterers. This poster
proposes to use jointly polarimetric time-frequency
signatures to characterize scatterers by neural net-
works.

Context

See for example in Fig.1, a color coded RAMSES SAR
image built using three subbands centered on the
frequencies f c = 8:82 GHz, f c = 9:37 GHz and f c = 10
GHz.

Fig.1: A SAR image which highlights dispersive
scatterers.

Extended radar imaging

Let � (k) be a mother wavelet supposed to represent the
signal re�ected by a reference target located around
r = 0 and backscattering the energy in the direction
� = 0 and at the frequency f given by k = 2f

c = 1.

A family of function is built 	 r 0;k0
from � (k) by the sim-

ilarity group S:
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The wavelet coef�cient CH (ro; ko) is de�ned as the
scalar product between the complex backscattering
coef�cient H and the wavelet 	 ro;ko

:

CH (ro; ko) = < H; 	 r o;ko
> (1)
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The hyperimage S(r ; k) is then de�ned as the wavelet
coef�cients. The scalogram which is the square
modulus of the wavelet coef�cients de�nes the hyper-
Image ~I H (r ; k).

Covariance property: covariance by a group of trans-
formations, the similarity group S which acts on the
physical variables r and k through rotations [R]� , dila-
tions a in length (or time) and translations � r as:

r �! r0= a[R]� r + � r
# #
k �! k0= a� 1 [R]� k :

The transformation law of the re�ected signal H (k) and
its extended image ~I (r ; k) is therefore given by:

H (k) �! H 0(k) = a exp(� 2i� k � � r ) H (a[R]� 1
� k)
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Polarimetric hyperImages

The wavelet transform is applied on each of the four
polarimetric channels.

The resulting Sinclair scattering matrix, called hyper-
scattering matrix, now depends on the frequency and
on the illumination angle:

[S](r ; k) =
�

Shh(r ; k) Shv(r ; k)
Svh(r ; k) Svv(r ; k)

�
: (2)

Polarimetric Hyperimage concept: Polarimetric evolu-
tion of the scatterers versus emitted frequency and ob-
servation angle
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Fig. 2: Algorithm to build polarimetric hyperimages.

Multi-layers perceptron

A multi-layer perceptron is a feedforward arti�cial neu-
ral network model that maps sets of input data onto a
set of appropriate output.
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Fig. 3: Architecture of a multi-layer perceptron.

The structure of our multi-layer perceptron is com-
posed of nodes whose the processing is :

a(1)
j =

dX

i=1

w(1)
ij x i + b(1)

j

where a(1)
j associated input with each hidden unit. Here

w(1)
ij represents the elements of the �rst-layer weight

matrix and bj are the bias parameters associated with

the hidden unit. The variables a(1)
j are then trans-

formed by the non-linear activation function of the hid-
den layer. The activation function is tanh(:). The out-
puts of the hidden units are given by:

zj = tanh a(1)
j

with the following property
dzj

da(1)
j

= 1 � z2
j .

The zj are then transformed by the second layer of
wheights and biases to give second-layer activation
values a(2)

k :

a(2)
k =

MX

j =1

w(2)
ij zj + b(2)

k

Finally, these values are passed through the output-
unit activation function to give output values yk. For
the more usual kind of classi�cation problem in which
we have c mutually exclusive classes, we use the soft-
max activation function of the form:

yk =
expa(2)

kX

k0

a(2)
k0

Results

The target under study is a "Cyrano" weapon model.
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Fig. 4: Learning basis extracted from the extended
Span.
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Fig. 5: Signatures extracted from the extended Span
and classi�cation results.
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Fig. 6: Learning basis extracted from the Pauli
time-frequency signatures.
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Fig. 7: Signatures extracted from the Pauli
time-frequency representation and classi�cation

results.


