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ABSTRACT
Previously, the well-known Optimum Gaussian Detector
(OGD) has been extended to the Multiple-Input Multiple-
Output (MIMO) case where all transmit-receive subarrays
are considered jointly as a system such that only one detec-
tion threshold is used [1, 2]. In this extension, all subarrays
have been assumed to be widely separated and the transmitted
waveforms are assumed to be orthogonal. However, the nec-
essary separation needed for each subarray to be uncorrelated
depends on several factors and it might not be possible to
ensure that this condition is always respected, especially in
the case of moving platforms. Moreover, perfectly orthogonal
waveforms do not exist. Hence, we consider in this paper, a
new robust MIMO detector that is able to maintain the same
Probability of False Alarm irregardless of the correlation
between the subarrays.

Index Terms— Robust, MIMO Radar, Probability of
False Alarm, Correlation

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a technique used
in communications that has recently been adopted for radar
applications [3]. In the context of radar, a (statistical) MIMO
radar is one where both the transmit and receive elements
are sufficiently separated so as to provide spatial diversity.
This reduces the fluctuations of the target Radar Cross Section
(RCS) due to the different target aspects seen by each pair of
transmit-receive elements [4]. It can also be used to improve
the probability of detection [5] and resolutions [6]. On top
of that, each transmit element sends a different (orthogonal)
waveform which can be separated at the receive end. This
provides waveform diversity which in turn increases the sep-
aration between clutter and target returns [7].

In [8], we have considered a signal model where all the
subarrays are assumed to be uncorrelated. Under Gaussian
clutter, the optimum detector is the MIMO Optimum Gaus-
sian Detector (MIMO OGD) [1, 2]. However, it is not always
possible to have subarrays that are totally uncorrelated.

According to [1], the subarrays have to be sufficiently
spaced in order to decorrelate the signal returns in each sub-
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array. This might not be possible to respect this condition,
especially when we consider MIMO-STAP where the trans-
mit and/or receive subarrays are moving. Moreover, perfectly
orthogonal waveforms do not exist, especially in the presence
of Doppler frequency. In this paper, we assume that insuffi-
cient spacing between subarrays and imperfect orthogonality
of the transmitted waveforms introduce correlation between
the subarrays.

The aim of this paper is to derive a robust detector that is
able to obtain the optimal result whether the subarrays are un-
correlated or not. Here we consider the case where the clutter
is Gaussian. Using the Maximum Likelihood (ML) method,
we obtain a new Gaussian MIMO detector which is robust to
the correlation between the subarrays. It is found that this new
detector has the same statistical properties in the absence of
target irregardless if the subarrays are correlated or not. It be-
comes the MIMO OGD when the subarrays are uncorrelated.

This paper is organized as follows. Firstly, we present
the new signal model for MIMO radars where subarrays can
be correlated or not (Section 2). Using this signal model,
we derive a new robust detector in Section 3. The adaptive
version of this new detector is then derived based on Kelly’s
Test in Section 4. The Probability of False Alarm (Pfa) for
this new detector is then analyzed through Monte-Carlo sim-
ulations for the cases where the clutter is correlated and not
(Section 5). Finally, conclusions are presented in Section 6.

2. NEW SIGNAL MODEL

In [8], the transmit and receive subarrays are assumed to
be widely separated. Orthogonal waveforms are transmitted
such that the received signal after matched filtering can be
expressed as:

yi = αipi + zi ∀ i = 1, . . . ,K

where K is the number of subarrays, αi is the RCS of the tar-
get seen by the i-th subarray. pi is the Lix1 steering vector for
the i-th subarray and Li is the number of antenna elements.

However, according to [1], the required spacing between
the subarrays for the target returns to be uncorrelated depends
on the size of the target. Similarly, for the clutter returns to be
uncorrelated, it depends on the resolution cell size. It is not al-
ways possible to achieve these spacings, especially in the case



of MIMO-STAP where the transmit or receive subarrays are
moving. More importantly, perfectly orthogonal waveforms
do not exist. We assume that these factors cause the return
signals from different subarrays to be correlated. Thus, we
consider the following signal model that does not assume the
independence of the different subarrays.

y = s + z,

where

y =




y1
...

yK



 s =




α1p1

...
αKpK



 z =




z1
...

zK



 .

The vectors y, p and z are the concatenation of all the re-
ceived signals, steering vectors and clutter returns, respec-
tively. The covariance matrix of each zi is given by Mii while
the inter-correlation matrix between zi and zj is denoted as
Mij such that z ∼ CN (0,M) and ∼ means to be distributed
as.

3. NEW ROBUST MIMO DETECTOR

Under Gaussian assumptions, we have the following hypoth-
esis test:

{
H0 : y = z,
H1 : y = s + z.

Under the hypothesis H0, it is assumed that the received
signal contains only clutter returns and hence there is no tar-
get. Under the hypothesis H1, it is assumed that the received
signal contains a deterministic signal on top of the clutter re-
turns and hence a target is present.

The classical likelihood ratio test is given by:

Λ(y) =
p(y|H1)
p(y|H0)

H1
≷
H0

η.

Given that z ∼ CN (0,M) and after some simple manipula-
tions, the GLRT becomes:

ln Λ(y) = −(y − s)†M−1(y − s) + y†M−1y

where the superscript † denotes the Hermitian operator. As
the target amplitudes are unknown, we have to find their ML
estimates: α̂ = [α̂1 . . . α̂1]T where the superscript T stands
for transpose. For each αi,

d ln Λ(y)
dαi

= tr

[(
d ln Λ(y)

ds

)† ds
dαi

]
,

=
[
2M−1(y − s)

]†





0
...
pi
...
0




= 0

where tr(·) denotes the trace. This gives:

y†M−1





0
...
pi
...
0




= s†M−1





0
...
pi
...
0




. (1)

Let R = M−1 and Rij is the block matrix corresponding to
the correlation between subarrays i and j. Using R, we can
express Eqn. (1) as summations:

K∑

j=1

y†
jRjipi =

K∑

j=1

s†jRjipi =
K∑

j=1

α̂∗jp
†
jRjipi,

K∑

j=1

p†
iRijyj =

K∑

j=1

α̂jp
†
iRijpj ∀ i = 1 . . . K.

Re-expressing this in matrix form, we get:

Aα̂ = b

where

A =




p†

1R11p1 . . . p†
1R1KpK

...
. . .

...
p†

KRK1p1 . . . p†
KRKKpK



 , (2)

b =





∑K
i=1 p†

1R1iyi
...∑K

i=1 p†
KRKiyi



 .

Note that A is Hermitian and positive definite. Hence the ML
estimate of α is given by:

α̂ = A−1b. (3)

Using these new notations as well as Eqn. (3), the detector
can be expressed as:

ln Λ(y) = 2$(y†M−1s)− s†M−1s,
= 2$(b†α)− α̂†Aα̂,

= b†A−1b

where $(·) denotes the real part. We can also express b as
b = P†M−1y where P is a (

∑K
i=1 Li)xK matrix containing

all the steering vectors:

P =




p1 . . . 0
...

. . .
...

0 . . . pK



 .

Thus the detector becomes:

ln Λ(y) = y†M−1PA−1P†M−1y.

This detector will be referred to as the Robust MIMO OGD
(R-MIMO OGD) detector.



Remark 3.1 In the particular case where there is no corre-
lation between the subarrays, the R-MIMO OGD detector be-
comes:

ln Λ(y) =
K∑

i=1

|p†
iM

−1
ii yi|2

p†
iM

−1
ii pi

. (4)

This is the same equation as that obtained for MIMO OGD,
as proposed in [1, 2].

Indeed, when the subarrays are uncorrelated, M is block di-
agonal:

M =




M11 . . . 0

...
. . .

...
0 . . . MKK



 .

Its inverse is also block diagonal. b and A become:

b =




p†

1M
−1
11 y1
...

p†
KM−1

KKyK



 ,

A =




p†

1M
−1
11 p1 . . . 0
...

. . .
...

0 . . . p†
KM−1

KKpK



 .

Thus the R-MIMO OGD detector becomes like that in
Eqn. (4).

Under H0, the received signal contains only clutter. Con-
sider the whitened received signal x = M−1/2y, the detector
becomes:

ln Λ(y) = x†M−1/2PA−1P†M−1/2x.

As the matrices M, A and P are of full rank and the mini-
mum rank among these matrices is K, the rank of the matrix
M−1/2PA−1P†M−1/2 is K. As x ∼ CN (0, I), the distri-
bution of the detector under H0 is simply χ2

2K which is the
same as the distribution of the MIMO OGD detector where
the subarrays are not correlated. More importantly, the dis-
tribution does not depend on the correlation between the sub-
arrays. This shows the M-Constant False Alarm Rate (M-
CFAR) property of the R-MIMO OGD detector. This prop-
erty is very useful as it means that the requirement of indepen-
dence between subarrays can be relaxed using this detector.

4. ADAPTIVE MIMO DETECTOR

As the covariance matrix is usually unknown in reality, we
consider in this section the adaptive version of the detector.

Theorem 4.1 Given a MIMO radar system containing K
sub-systems and Li elements (L > 1) in each sub-system, the
optimum adaptive detector using Nr secondary data (con-
taining only clutter returns) is:

y†M̂−1PÂ−1P†M̂−1y
Nr + y†M̂−1y

H1
≷
H0

η2. (5)

Remark 4.1

• If there is only one subarray, Eqn. (5) becomes Kelly’s
Test [9].

• If the covariance matrix M is block diagonal, i.e. the
subarrays are uncorrelated, and this a priori informa-
tion is used in the estimation of M, this will result in
another version of the MIMO Kelly’ s Test:

K∏

i=1

1

1− |p†
iM̂

−1
ii yi|2

(p†
iM̂

−1
ii pi)(Nr+y†i M̂

−1
ii yi)

H1
≷
H0

η3.

Proof 4.1 Taking into consideration both the received signal
and the secondary data, the likelihood ratio test can be writ-
ten as:

max
α

Λ(y) =
‖T0‖

minα‖T1‖
(6)

where ‖·‖ denotes the determinant,

T0 =
1

Nr + 1

(
yy† +

Nr∑

l=1

c(l)c(l)†
)

,

T1 =
1

Nr + 1

(
(y − s)(y − s)† +

Nr∑

l=1

c(l)c(l)†
)

and c(l) are the secondary data containing only clutter re-
turns.

Replacing ‖T0‖ and ‖T1‖ in Eqn. (6), we get:

max
α

Λ(y) =
1 + 1

Nr
y†M̂−1y

minα(1 + 1
Nr

(y − s)†M̂−1(y − s))
,

=
1 + 1

Nr
y†M̂−1y

1 + 1
Nr

y†M̂−1y − 1
Nr

y†M̂−1PÂ−1P†M̂−1y

where M̂ is the Sample Covariance Matrix of M and is given
by:

M̂ =
1

Nr

Nr∑

l=1

c(l)c(l)†

and Â is the matrix obtained by replacing M by M̂ in
Eqn. (2). Re-arranging the equation, we obtain the MIMO
Kelly’s Test given in Eqn. (5).

5. SIMULATION RESULTS

Monte-Carlo simulations (106 runs) are carried out. The num-
ber of subarrays K is set to be 3 and the number of elements
in each subarray Li is set to be identical and equal to L = 6.
The covariance matrix Mii of each zi, without loss of gener-
alities, is chosen identically and equal to Msa. Msa is spa-
tially colored and its elements are given by:

Msa(p, q) = ρ|p−q|ej π
2 (p−q).



The correlation coefficient ρ is chosen to be 0.2 such that there
is a slight correlation between different elements of the sub-
array.

For the case where the subarrays are considered to be un-
correlated, we have

Mij =
{

Msa i = j,
0 i &= j.

For the case where the subarrays are correlated, the inter-
correlation matrices are generated using uniformly distributed
variables:

Mij(p, q) = τijρ
|p−q|
ij ej π

2 (p−q).

where τij and ρij are uniformly distributed in the interval
[0, 0.4]. Thus, the mean of ρij is equal to ρ. The inclusion
of τij is to make the power of the intercorrelation matrices
Mij smaller than that of the correlation matrices Mii.

In Fig. 1, we have plotted the ”Pfa-λ” curves for the R-
MIMO OGD detector when the subarrays are correlated and
when they are uncorrelated. We see that there is perfect agree-
ment between the two curves showing that the curves do not
depend on the correlation between the subarrays, i.e. it does
not depend on the covariance matrix. This confirms the M-
CFAR property of the new R-MIMO OGD detector.

Fig. 1. Pfa against detection threshold λ for Monte-Carlo simu-
lations under Gaussian clutter under R-MIMO OGD for correlated
and uncorrelated subarrays.

6. CONCLUSIONS

A new MIMO Gaussian detector which takes into considera-
tion possible correlation between subarrays has been derived.
It becomes the classical MIMO OGD when the subarrays are
uncorrelated such that the covariance matrix is block diag-
onal. This new detector is robust as its statistical property
under H0 is the same no matter if there is correlation between

subarrays or not, i.e. the detector is M-CFAR. The adaptive
version of this detector is also derived based on Kelly’s Test.
Finally, the M-CFAR property of the detector is verified us-
ing Monte-Carlo simulations.

This new detector is interesting due to its robustness. Fur-
ther works will be done to look into the statistical properties
and detection performance of the detector and its adaptive ver-
sion.
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