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ABSTRACT

Modern SAR systems have high resolution which leads the
backscattering clutter to be non-Gaussian. In order to prop-
erly classify images from these systems, a non-Gaussian noise
model is considered: the SIRV model. A statistical test of
equality of covariance matrices is used to classify pixels, tak-
ing into account the critical region of the test which rejects
the likeliness of a covariance matrix to any of the class cen-
ters. This test is applied on experimental data obtained with
the ONERA RAMSES system in X-band. The results show a
good separation between natural and man-made areas of the
image.

Index Terms— Image classification, polarimetry, syn-
thetic aperture radar, statistics

1. INTRODUCTION

The polarimetric clutter obtained with recent SAR systems
tends to have non-Gaussian characteristics. One of the most
general and elegant non-Gaussian noise model is provided by
the so-called Spherically Invariant Random Vectors (SIRV).
This paper proposes a method for classification of high res-
olution polarimetric SAR data, based on a statistical test of

equality of covariance matrices. It is organized as follows :
Section 2 presents the statistical framework. Section 3 de-
scribes the proposed method. Then, results on experimental
data are presented in Sect. 4.

2. STATISTICAL FRAMEWORK

A SIRV [1] is a compound Gaussian process defined as the
product of a multivariate circular Gaussian process and a
scalar random variable:

k =
√
τ x (1)

where τ , a positive random variable, called texture, whose
Probability Density Function (PDF) is unknown and x is a
complex circular zero-mean Gaussian m-vector with covari-
ance matrix T = E

[
xxH

]
, called speckle whereE[.] denotes

the statistical expectation. For POLSAR data, the polarimet-
ric diversity is modeled by the speckle x containing the 3
polarization channels HH , HV and V V , i.e. m = 3 and the
random variation of the power from cell to cell corresponds
to the texture τ .

To ideally estimate the covariance matrix of a pixel (i, j),
represented by its target vector k, one needs several realiza-
tions of the pixel at different times. As it is impossible for



SAR images, a spatial neighborhood of the pixel (k1, ...,kN)
is required for the estimation process. To test the equality of
a population covariance matrix, T and a known matrix, Tω ,
the classical hypothesis test is defined as:{

H0 : T = Tω

H1 : T 6= Tω

(2)

In the classical Gaussian model, the Maximum Likelihood
Estimator (MLE) of the covariance matrix is called the Sam-
ple Covariance Matrix (SCM):

T̂SCM =
1

N

N∑
i=1

ki k
H
i (3)

Under SIRV assumption, the covariance matrix can be es-
timated thanks to ML theory. Considering a deterministic tex-
ture, Gini et al. derived in [2] the exact ML estimate, solution
of the implicit equation:

T̂FP =
m

N

N∑
i=1

ki k
H
i

kHi T̂−1
FP ki

(4)

Existence and uniqueness of the above equation solution
T̂FP , the Fixed Point (FP) estimate, have been investigated
in [3], and its statistical properties (consistency, unbiasedness
and asymptotic Gaussianity) have been studied in [4]. In
practice, it is obtained by the associated recursive algorithm
which converges whatever the initialization (see for details
[3]).

3. M-DISTANCE

In [5], Lee et al. proposed an algorithm to classify pixels in a
polarimetric SAR image, based on the statistical distribution
of the covariance matrix. This algorithm used a distance mea-
sure, called the Wishart Distance, derived from the Wishart
distribution of the covariance matrices. We propose to use a
novel distance measure derived from a statistical test of equal-
ity of covariance matrices, the Box’s M-test[6]. As discussed
in [7], the test, originally developed for the real case, can be
extended to the complex case. The test statistic is given by :

t =
|T̂1|

ν1
2 |T̂2|

ν2
2

|T̂t|νt

where νi is the degree of freedom of T̂i, νt = ν1+ ν2 and T̂t

is the pooled sample covariance matrix defined by:

T̂t =
ν1T̂1 + ν2T̂2

ν1 + ν2

As the exact distribution of t is rather cumbersome, Box pro-
poses the following approximation for the distribution of u
:

u = −2(1− c1) ln(t) ∼ χ2

(
1

2
m(m+ 1)

)

where c1 = N

(
2m2 + 3m− 1

12 (m+ 1)

)
and χ2(a) denotes the χ2

distribution with a degrees of freedom. This approximation
holds for Wishart-distributed matrices. Pascal et al. proved
that the FP estimate is asymptotically Wishart-distributed
with ν = (m/m+ 1)N degrees of freedom in [4]. The χ2

approximation can therefore be used for the FP estimate.
We use the test statistic u from Eq. (3) as a distance measure
in the following algorithm:

1. Initially classify the image into 8 areas using the H/α
decomposition.

2. Select the first class of the H/α decomposition (the
class situated in the top-right corner of the H/α plane)
as the first class of the classifier. We have found that
chosing a different class for the initialization had little
to no influence on the end result.

3. For each pixel, compute the M-distance between its co-
variance matrix and each class center using Eq. (3) (in
the first iteration, there is only one class center).

4. If the minimum distance is lower than the threshold

given by χ2

(
0.999,

1

2
m(m+ 1)

)
, classify the pixel

in the corresponding class. Else, put the pixel in the
rejection class.

5. Once all pixels are classified, define the rejection class
as a new class and compute its class center.

6. Repeat until there are 8 classes and a rejection class.

4. APPLICATION ON EXPERIMENTAL DATA

Experimental data were acquired in X-band by the ONERA
RAMSES system in the area of Brétigny, France, with a spa-
tial resolution of approximately 1.5 meter in range and az-
imuth, and a mean incidence angle of 30◦. Fig. 1 is a color
representation of the Brétigny area in the Pauli basis : HH −
V V in red, HV in green and HH + V V in blue. One can
clearly distinguish two large buildings on the left side of the
image, a parking lot on the right side, two small buildings in
the middle, an urban area on the top-left corner and 4 bright
spots on the lower-right corner, corresponding to trihedral
corners. Fields and forested areas constitute most of the re-
maining part of the area. The algorithm from Sect. 3 has been
applied on these data. The results can be seen below, on Fig.
2.

Fig. 2(a) show the results of the classical Wishart Classi-
fier on our data, using the SCM. While some areas are well
separated from the rest (namely, the fields in yellow, green
and blue), the buildings areas contain many classes. Fig. 2(b)
shows the results of the classifier after the first iteration. There
are only 2 classes : the first class of the classifier in blue and



Fig. 1. Color representation of the Brétigny area, France in
the Pauli basis : HH − V V in red, HV in green and HH +
V V in blue.

the rejection class in brown. The features mentioned above
are, for the most part, clearly identifiable on this image and
they all belong to the rejection class. Fig. 2(c) shows the re-
sults of the classifier after 8 iterations. There are 9 classes, in-
cluding the rejection class. The number of pixels contained in
the rejected class has been reduced from 46% to 23%. When
comparing Fig. 2(b) and Fig. 2(c), the rejected class in brown,
although reduced, is still a big part of the image. Regarding
the other classes in Fig. 2(c), it is rather difficult to provide a
direct subjective interpretation.

5. CONCLUSION

In this paper, authors proposed a novel distance measure to
classify polarimetric covariance matrices taking into account
the critical region inherent in the definition of a statistical test.
Results of the classical Wishart Classifier have been com-
pared to our algorithm. The results show a good separation
between natural and man-made parts of the scene but further
classification is not sufficient and should be improved, e.g.
with a pre-segmentation of the image.
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